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Abstract—As part of a Technical and Scientific Project 

offered to L2 students of ISEP over a period of four months at 

the rate of one hour per week supervised, a study of the 

composition and the total number of all riffle shuffles used in 

magic was requested. The riffle shuffle consists of taking a deck 

of cards, cutting it into any two parts, then inserting randomly 

the cards of the first packet into the second. In first 

approximation there are 52! possible riffle shuffles. This number 

is an upper limit since the cards in a subdeck cannot change 

their relative position to their neighbours. A card A below a 

card B in the same subdeck will not be able to find itself above in 

the final shuffle. The first goal of the project is to compare one 

single algorithm implemented either recursively or iteratively in 

terms of execution time depending on the number of cards. The 

second goal is to compare the implementation of the same 

algorithm (either iterative or recursive) in several different 

programming languages (Python, Language C, Matlab, etc.) 

and to compare execution times according to the used language. 

Thus, a recursive algorithm was proposed to the students. All 

the students tried to code this algo and make it iterative … 

except one! He imagined another algorithm. The algorithm of 

the student and the teacher were compared in terms of execution 

time: do the student exceed the master? The aim of this article is 

to share my experience. I leave it to you to imagine educational 

sequences around this project in adequacy with your desires and 

the level of your students. 

Keywords—informatics langage, magic, riffle shuffle, Matlab, 

C, Python, recursive algorithm, iterative algorithm, higher 

education 

I. INTRODUCTION

A. Why Use a Magic Shuffle as the Project?

The teacher is fascinated by magic (or rather, conjuring) 

and for many years he has used this way of teaching, both in 

his physics classes and as higher education teacher trainer. 

The aim of the magician is to hide the principles he uses 

(using maths, physics, psychology, sleight of hand, etc.) by 

disguising the trick so that the audience has no way of 

discovering how it is done; thus allowing the magic to remain. 

The teacher can do exactly the opposite: unraveling a 

magic trick to highlight the principles used! 

B. The Specifications: Count and Determine the

Composition of All Possible Riffle Shuffles

The subject was given for the third semester students in 

ISEP which is a higher education school in France (named 

‘Grandes écoles d’ingénieurs’) as a Scientific and Technical 

Project (STP) over a period of four months at the rate of one 

hour per week supervised. 

Fifteen students have chosen this project and have had a 40 

hour Python course before the project. A third of them have 

achieved success for the entire project but following the 

teacher’s algorithm. Only one student has achieved the 

project by following his own algorithm! 

Whatever the chosen algorithm, we need to obtain the 

number and the composition of all riffle shuffles between a p 

card deck and a q card deck (p+q=n cards). 

We introduce here firstly many algorithmic ameliorations 

and secondly a pedagogic point of view by giving, through the 

article construction, a possible approach for teaching a high 

level informatics language. 

II. LITERATURE REVIEW

Lesser and Glickman wrote in [1]: “The use of magic has 

recently been gaining attention in advancing areas of science 

such as cognitive neuroscience [2] (Martinez-Conde & 

Macknik, 2008), biology [3] and cognitive psychology [4]. 

Several papers and books are available on classroom uses of 

magic involving mathematics, especially elementary algebra 

[5]”. Then Wissemenn and Watt added: “For hundreds of 

years, magic tricks have been employed within a variety of 

pedagogic contexts, including promoting science and 

mathematics, delivering educational messaging, enhancing 

scepticism about the paranormal, and boosting creative 

thinking for product design [6]”. 

A theoretical solution of the number of riffle shuffles is 

given by Aldous and Diaconis [7]. However, the composition 

was not given. A first mathematical and algorithmically study 

to determine the composition of all riffle shuffles is given in 

french by Lachal [8].  

However, there appear to be no books and only a few 

isolated articles presenting the use of magic to explain 

concepts in probability or statistics. Not only mathematicians 

and scientists, but the general public as well have shown much 

interest in the card randomization problem, as reported in 

popular science periodicals and major news media [9]. 

Since 1955 until today, determining the number of riffle 

shuffles to be made so that an initially arranged ordered deck 

is well shuffled, is a problem that fascinates mathematicians. 

In 1955, the Gilbert–Shannon–Reeds model is a probability 

distribution on riffle shuffle permutations that has been 

reported to be a good match for experimentally observed 

outcomes of human shuffling [10] and that forms the basis for 
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a recommendation that a deck of cards should be riffled seven 

times in order to thoroughly randomize it is given by Diaconis 

in 1992 [11]. 

An another study by Mann from Harvard was published in 

1998 [12]. Then in 2014, Aldous has done a lecture in Berkley 

university introducing the Markov chain.  

Colm Mulcahy, whose mentor was Gardner ([13, 14]), has 

worked on the relation between magic and science since 40 

years and has done recently a minicourse in 2019 [15]. 

The most important is that Magic is one of the 20 

modalities of fun identified by Lesser and Pearl [15]. 

[16] as having potential for motivating students in statistics 

courses. 

III. MATERIALS AND METHODS 

First the goals of the teacher and the student are presented 

and thus the definition of the riffle shuffle. 

A. The Goals 

1) The initial goal of the teacher: Iterative vs recursive 

method 

The aim of the professor is to compare the execution time 

of the same implemented algorithm either with an iterative 

method or with a recursive method. This is an ultra-classic 

problem. The teacher hopes that the approach with the cards 

would be both more fun and easier for students to find the 

algorithm. 

2) The second goal of the teacher: Matlab vs Python 

The professor has coded his algorithm with Matlab and his 

students learned Python programming, the secondary 

objective was to compare on the same computer the execution 

time of his algorithm encoded in Python and in Matlab, 

whether for the iterative or recursive method. 

3) The main objective proposed by the student: 

Algorithms comparison 

The algorithm that meets the project’s specifications is not 

trivial. Thus, the teacher introduced his algorithm to the 

students during two sessions using the cards. 

A student distinguished himself by finding another 

algorithm! So the idea was quite naturally to compare the 

execution time of our algorithms with both the iterative 

method and the recursive method. 

4) The second goal brought by the student: coding in C to 

manage memory and improved the efficiency of algorithms 

Whether in Python or Matlab, the interpreter manages 

automatically the memory. If all function calls are done by 

values, it is very clear that the recursive method will saturate 

the computer’s memory faster than the iterative method. But 

what happen if we call these functions by address? 

B. The Riffle Shuffle 

Let us imagine a n card deck be cut into two parts, called 

subdecks. Each subdeck is riffled with the hands, and the 

cards of each subdeck become entangled, as presented in Fig. 

1. 

 

 
Fig. 1. Example of a cut for a n card deck and then a riffle shuffle. 

 

1) Number of shuffle for a given cut of the deck 

The deck can be cut at different places. So we end up with 

two subdeck consisting of p and q cards. We can determine 

analytically the number of possible shuffles, but not the 

composition of these. 

2) Number of shuffle for all possible cuts of the deck 

Let us think about what we have, a n card deck. To know 

the total number of possible shuffles (named M(n)), simply 

add all possible shuffles for each of the (n-1) possible cuts.  

However, how can we find the composition?  It is humanly 

‘impossible’ if the number of cards is greater than seven 

because the number of different riffle shuffles is given by:  

 
M (n)=2n – n.                              (1) 

 

A demonstration was proposed in [17]. 

However, this number did not count of the "duplicates", 

which are, identical shuffles obtained by different cuts. 

C. Computer Representation of a Deck of Cards 

To represent the card deck, we allocate a value to each 

single card of the deck either between 1 and 52 or between 

101 and 113, 201 and 213, 301 and 313 and finally 401 and 

413 (the hundred value represents the card family). But there 

are so many others possibilities.  

Whatever the choice, a bijection between each single card 

of the deck and a number is created. 

A new bicycleTM card deck is presented in Fig. 2. A 

computer representation of this deck is presented in Fig. 3 

whose card number is between 1 and 52. 

  

 
Fig. 2. A new bicycleTM card deck. 

 

 
Fig. 3. A new bicycle card deck informatics representation with card 

numbered between 1 and 52. 

IV. TEACHER’S ALGORITHM 

The (p+q) card deck is cut and then, one of the two 

subdecks is broken down into a series of q cards. The first 

card is shuffled into the p card deck and all the resulting decks 

International Journal of Innovation, Management and Technology, Vol. 15, No. 1, 2024

12



  

are shuffled with the second card and so on. 

A. All Possible Cuts from a n Card Deck 

Let us take a  N card deck in this order:  

C1 – C2 - … - Ci - … - CN. Only (N-1) ways are possible to 

cut this deck in two subdecks as presented in Fig. 4: 
 

 
Fig. 4. All possible cuts of a n card deck. 

 

B. Break down One of the Both Subdeck into a Series of 

Single Cards 

Let us imagine an  i < N card deck in this order : C1 – C2 - … 

- Ci The top card C1 is put away and the new subdeck contains 

(i-1) cards in this order : C2 - … - Ci. This operation is 

repeated as many times as the number of card of the  “new” 

subdeck is equal to one, as presented in Fig. 5. 

 

 
Fig. 5. Decomposition of the p card subdeck in order to shuffle with a q card 

subdeck. 

 

C. Shuffle One Card into a q Card Deck 

The operating mode used in order to obtain the 

composition of all possible riffle shuffles between one card 

and a q card deck is presented in Fig. 6. 
 

 
Fig. 6. Modus operandi to find all riffle shuffles between a 1 card deck and a 

q card deck enumeration and decomposition. 

 

D. Shuffle One Card into a q Card Deck above the 

Position i 

The operating mode used in order to find all of possible 

riffle shuffles between one card and a q card deck over the 

card Ci is presented in Fig. 7. 

  

 
Fig. 7. Modus operandi to find all riffle shuffles between a 1 card deck and a 

q card deck over the card Ci (enumeration and decomposition). 

 

E. Teacher’s Algorithm 

To determine the number and the composition of all 

possible riffle shuffles, thanks to the study with a few cards, 

we have to follows this strategy: 

If the p card subdeck contains more than one card: the deck 

is decomposed in p single cards as described in Fig. 5 (the last 

card is Cp.). Otherwise we have got exactly one card, say Cp. 

The Cp card is shuffled in the q card subdeck, as presented 

in Fig. 6. 

All the calculated riffle shuffles must be shuffled with the 

card Cp-1. All calculated riffle shuffles must be shuffled with 

the card Cp-2 and so on, as presented in Fig. 8. 
 

 
Fig. 8. Algorithm to calculate and determine all of the compositions of 

possible riffle shuffles between a p card subdeck and a q card subdeck. 

 

F. Computer Implementation 

An iterative and recursive implementation was carried out 

in Matlab by the teacher and in other languages by the student. 

V. STUDENT’S ALGORITHM 

The student’s algorithm breaks down into two distinct parts. 

Firstly, the ‘insertion’ algorithm calculates almost 

instantaneously all the insertion vectors (which allows to 

know the total number of possible shuffles). Secondly, the 

‘combination’ algorithm, thanks to the insertion vectors, 

allows to obtain the exact composition of each shuffle. 

A. The Main Idea: The Insertion Vector or How not to 

Work Directly on the Card Deck 

Instead of working directly on an array that represents the 

card deck, the student uses an insertion vector [a0 , a1 , … , ap] 

for a p card deck. The value of (aj) 0 ≤ j ≤ p represents the 

number of cards inserted. The position in the array represents 

the place where these aj cards are inserted in the p card deck. 

Fig. 9 illustrates this process. 
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Fig. 9. Student’s algorithm broken down into 2 phases: insertion and 

combination. 

 

B. Finding the Total Number of Possible Shuffles Is Like 

Generating All Insertion Vectors 

For each possible cut, it is enough to generate all possible 

insertion vectors. Each vector allows to manipulate array 

whose size can be up to half the size of the arrays used by the 

teacher’s algorithm. We therefore expect this algorithm to be 

much faster than that the teacher ones!  

C. Determine the Composition of a Shuffle from the 

Insertion Vector 

Once the insertion vector has been determined, the 

previously established single match must be used to determine 

the final shuffle composition by inserting array fragments of 

the first packet subdeck into the second subdeck. A computer 

representation with list is presented in Fig. 10. 
 

 
Fig. 10. Computer representation by list of the ‘combination’ algorithm. 

 

D. Determine the Composition of All Shuffles: Use both  

Previous Algorithms Presented 

To determine the composition of all shuffles, we must 

therefore use the algorithm presented in the previous section 

with all the insertion vectors found. 

E. Computer Implementation 

An iterative implementation was carried out in all 

informatics languages by the student. 

VI. RESULTS: COMPARISON BETWEEN DIFFERENT 

PROGRAMMING LANGUAGES AND ALGORITHM COMPLEXITY 

Firstly, the figures presented in this paragraph show that, 

for the same algorithm, programming in C language makes it 

possible to obtain results faster than in Python and even faster 

than in Matlab. Secondly, using the tn+1/tn ratio, we can 

determine when the RAM is saturated and when the computer 

stores in ROM.  

A. Computing Time for the Teacher’s Algorithm Written in 

C, Python and Matlab 

Fig. 11 clearly shows that the same iterative teacher’s 

algorithm written in C is much more efficient than the one 

written in Python and Matlab. The memory management is 

automatic in Python and Matlab; it is not the case in C. Thus 

the good efficiency of the C-programs can be explained by 

optimized C memory management. 
 

 
Fig. 11. Computing time vs card number in the deck for the iterative 

teacher’s algorithm written in C, Python and Matlab. 

 

Fig. 12 represents the logarithm of the computing time as a 

function of the number of cards contained in the deck. It 

shows that the property previously seen is still valid for the 

recursive teacher’s algorithm. 
 

 
Fig. 12. Logarithm of computing time vs card number in the deck for the 

iterative and recursive teacher’s algorithm written in C, Python and Matlab. 

 

B. Computing Time for the Student’s Algorithm Written in 

C, Python and Matlab 

Fig. 13 and Fig. 14 clearly show that the same student’s 

algorithm written in C is much more efficient than the one 

written in Python and Matlab. 
 

 
Fig. 13. Computing time vs card number in the deck for the insertion 

student’s algorithm written in C, Python and Matlab. 
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Fig. 14. Computing time vs card number in the deck for the combination 

student’s algorithm written in C, Python and Matlab. 

 

C. Plot t(n+1) = f(tn) Allows to Determine Roughly the 

Algorithm Complexity and Automatic Memory 

Management  

The curves in the Fig. 12 are almost straight lines (or are 

very close to the linear regression line). Thus, we can 

conclude that Log(t)  n. 

The curve in Fig. 15 represents the computing time vs 

iterative professor’s algorithm written in Matlab. It rises 

steeply and then descends steeply.  

This means that t15=3 t14, t16 = 6 t15 and t17 = 3 t16. So there 

has been a significant change that can be attributed to ROM 

storage because RAM should (or seems to) be saturated. 
 

 
Fig. 15. The computing time vs iterative professor’s algorithm written in 

Matlab. 

VII. COMPARISONS BETWEEN ITERATIVE AND RECURSIVE 

PROGRAMMING 

The figures also show that there is almost no difference 

between an iterative implementation and a recursive 

implementation, which seems to be non-intuitive result - until 

a certain value n0 then a divergence between the curves 

appears . Then we show our memory management in C. 

A. Comparison in Python  

Fig. 16 shows the computing time vs iterative and recursive 

professor’s algorithm written in Python. We determine the 

value n0, value from which the iterative method is more 

efficient than the recursive method. 
 

 
Fig. 16. The computing time vs iterative and recursive professor’s algorithm 

written in Python. 

 

B. Memory Management Is the Key of Algorithm 

Implementation Efficiency  

The Fig. 12 shows that the Matlab implementation is less 

efficiency than the Python and C implementation. Indeed, 

when a function call is made, a copy of all the data  passed in 

the function, is done. In the recursive algorithm, many calls 

are done and the RAM memory will be saturated “faster” than 

in the iterative algorithm. 

Fig. 17 shows the memory management for a recursive 

module with data passed by values, with several copies of the 

almost same data. 
 

 
Fig. 17. Memory management for a recursive module with data passed by 

values. 

 

Even if the python arrays are dynamic arrays, the 

‘automatic’ memory management is less efficient than the 

student’s management in C! 

Fig. 18 shows the memory management for a recursive 

module with data passed by address, with only one copy of the 

same data. 

 

 
Fig. 18. Memory management for a recursive module with data passed by 

address. 
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VIII. COMPARISON BETWEEN THE TEACHER’S ALGORITHM 

AND THE STUDENT’S ALGORITHM 

To compare the speed of the two algorithms, we must 

compare the results obtained from the same data. Thus, we 

compare the execution time of the professor’s algorithm with 

the student’s algorithms, which are more efficient. 

A. Teacher’s Algorithm vs ‘Insertion’ Algorithm of the 

Student 

Fig. 19 confirms what we thought, that the algorithm named 

‘Insertion’ is much faster than the professor’s algorithm. The 

additional information is the minimum number of cards where 

there is a large discrepancy between the both algorithms: 27 

cards. 
 

 
Fig. 19. Comparison between the ‘insertion’ algorithm of the student and the 

iterative algorithm of the teacher. 

 

B. Teacher’s Algorithm vs ‘Combination’ Algorithm of the 

Student 

Fig. 20 clearly shows that the student’s algorithm is more 

efficient than the professor’s algorithm. By comparing figures 

19 and 20 we can deduce that the overall time saving is 

achieved mainly thanks to the insertion vector!  

 

 
Fig. 20. Comparison between the ‘combination’ algorithm of the student and 

the iterative algorithm of the teacher. 

IX. SYNTHESIS, CONCLUSION, GOING FURTHER AND 

PROSPECTS  

Before asking the question ‘is it opportune to develop this 

type of teaching?’, let us make a synthesis of students’ work 

and then a conclusion in relation to the teacher’s expectations. 

After this, we can answer the aforementioned question by 

suggesting ways to go further. 

A. Synthesis and Conclusion 

The aim of the paper was not only to show the result of a 

high education project, but to also to give ideas for a course or 

using project pedagogy. 

Fifteen students have chosen this project and have had a 40 

hour Python course before the project.  

A third of them has achieved success for the entire project 

but following the teacher’s algorithm. The remaining 

two-thirds except one have achieved: 

 the program to find all possible cuts, 
 the program to shuffle one card in a q card deck, 
 the iterative program to find all possible riffle shuffle.  

B. Share the Project Results with a Poster and Video 

The ISEP communication service asked the student to 

create a poster (presented in Fig. 21) to present his project 

during an ISEP open day. This rewards this student’s 

investment and increased motivation. 

 

 
Fig. 21. Student’s poster for an ISEP open day. 

 

C. Going Further and Prospects 

There are many magical shuffles (Faro, Monge, …) which 

are not in fact aleatory shuffle in the common sense but a 

simple reorganization of the cards, whose positions are 

calculated from a deterministic function. An integer number 

of shuffles allows to find the initial state of the card deck. So 

we can use this property to introduce students to encryption 

theory [18]. 

We can even imagine teaching the major phases of 

communication between two points using digital electronics 

where encryption would be done by Faro shuffles 

The most important thing for us remains to use the passion 

for the magic as a teaching vector which also weaves a human 

bond between the professor and the student. 
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