



Abstract—Data warehouse stores data accumulated over a

period of time from disparate data sources for providing

answers to analytical queries. These queries, which are long and

complex in nature, have high query response time when

processed against a large data warehouse. This response time

can be reduced by constructing materialized views and storing

them in a data warehouse. These views need to contain relevant

and required information for answering future queries, so that

future queries can be answered in a reduced response time to

make decision making more efficient. A Materialized Views

Construction Framework (MVCF), presented in this paper, lays

down a strategy for constructing materialized views from

previously posed queries on the data warehouse. The objective

of MVCF is to enable construction of materialized views that

are subject-specific and contain frequently accessed

information that are capable of providing answers to future

queries. This in turn would facilitate decision making.

Index Terms—Data warehouse, materialized view.

I. INTRODUCTION

Contemporary business organizations are eager to exploit

data available in disparate data sources spread across the

globe. This data, being valuable for decision making, needs

to be organized in a manner so that decisions can be made

quicker. Most organizations store this data continuously over

a period of time in a data warehouse on which analytical

queries can be posed for decision making [1]. These

analytical queries are long and complex in nature and, when

posed against a large data warehouse consume a lot of time

for processing. Analytical processing being exploratory in

nature, results in further delay in decision making. Though

effective solutions exist to represent data for analytical

queries, the problem of high query response time still needs

to be addressed adequately [2]. This problem has been

addressed to some extent using query optimization

techniques [3], [4] and indexing techniques [5] but these do

not scale for large amounts of data in the data warehouse. An

alternative way to address this problem is by storing

materialized views in a data warehouse [6]. These views

contain pre-computed aggregate, or summarized, information

and are stored in a data warehouse for the purpose of

answering analytical or decision making queries in a reduced

response time. It eliminates the overheads associated with

expensive joins and aggregations [7]. Materialized views

Manuscript received October 13, 2012; revised February 16, 2013.

T. V. Vijay Kumar is with School of Computer and Systems Sciences,

Jawaharlal Nehru University, New Delhi-110067 (e-mail:

tvvijaykumar@hotmail.com).

Kalyani Devi is with Business Solutions Department in Siemens

Information Systems Limited, Gurgaon, Haryana-122001 (e-mail:

devi_kalyani14@yahoo.co.in).

have several issues associated with them like view selection,

view maintenance, view evolution and answering queries

using views [8]. This paper focuses on the view selection

issue [9]. View selection is concerned with selecting an

appropriate set of views that improves the query response

time and fits within the available storage space for

materialization [9], [10]. It aims to achieve a trade-off

between the query response time and the available storage

space [11] in order to ensure optimal performance of the

system [12], [13].

Though materializing all possible views may reduce the

query response time significantly, it is not feasible to store

views in the available space for materialization for higher

dimensional data sets due to the number of views being

exponential with respect to the number of dimensions. Thus,

there is a need to select a subset of views from amongst all

possible views. This selection cannot be done arbitrarily as it

may result in materialized views having data that may not be

used for answering queries and relevant data for answering

queries may not be in the selected materialized views. Further,

optimal view selection is shown to be an NP-Complete

problem [12]. Several view selection approaches exist in

literature, most of which are heuristic based or empirical

based. Several heuristic based approaches exist for

materialized view selection with most of them being either

greedy based [10], [12], [14]-[18] or evolutionary based [19],

[20], [21]. Empirically, materialized views can be selected by

monitoring the queries, submitted by users, and assessing

them on factors like frequency or size of data in order to

materialize appropriate views [11], [22]. This paper presents

a framework that lays out a strategy for empirical view

selection.

Most existing empirical based approaches for view

selection are workload driven. Their basis is that past query

workloads are indicative of the queries likely to be posed in

future and materialized views constructed using them have a

greater likelihood of answering future queries. Large

numbers of queries may be there in the query workload.

Considering all queries for constructing materialized views

may not be appropriate as some of these may not be relevant

and useful, and may not be accessed frequently. They may

increase the cost without contributing much towards

answering future queries. Those queries that maximize the

profit with respect to answering future queries should be

materialized. The selection of such materialized views is a

complex problem. This problem is addressed by the

Materialized View Construction Framework (MVCF),

presented in this paper, which lays down a strategy for

constructing materialized views using previously posed

queries on a data warehouse. The framework objective is to

enable construction of materialized views that have high

An Architectural Framework for Constructing

Materialized Views in a Data Warehouse

T. V. Vijay Kumar and Kalyani Devi

International Journal of Innovation, Management and Technology, Vol. 4, No. 2, April 2013

192DOI: 10.7763/IJIMT.2013.V4.390

likelihood of answering future queries. This paper is a

revised version of [23].

The paper is organized as follows: The architectural

framework MVCF is discussed in Section II. Section III

briefly discusses a system MVCS based on the framework

MVCF. Experimental Results are discussed in Section IV

followed by conclusion in section V.

II. MVCF

The Materialized View Construction Framework MVCF

[23] describes a framework for constructing materialized

views using previously posed queries on the data warehouse.

This framework assumes that the queries, likely to be posed

on the data warehouse in future, shall be similar to the queries

posed on the data warehouse in the past and thus these

previously posed queries can be used for constructing

materialized views over a data warehouse. MVCF assumes

that a Query Log comprising of these previously posed

queries is maintained. This Query Log would then be used to

construct materialized views in a data warehouse. MVCF

aims to construct materialized views that are subject or

domain specific as most queries in the data warehouse are

subject specific. MVCF ensures this by grouping closely

related queries in a Query Log into clusters or groups of

queries, where each such group specifies a subject area or

domain in the data warehouse. MVCF then describes a

mechanism to prune out infrequent and non-optimal queries

from each domain. MVCF first identifies frequent queries in

each domain and follows it up by selection of optimal queries

from amongst these. A merging strategy is specified for

merging these optimal queries to construct materialized

views for the respective domain. This construction of

materialized views using MVCF is described by four phases

namely Domain Creation, Frequent Query Identification,

Optimal Queries Selection and Optimal Queries Merging.

This framework MVCF [23] is given in Fig. 1.

Fig. 1. Architectural framework MVCF [23].

A. Domain Creation

A data warehouse stores subject specific data [1] with most

queries posed on the data warehouse, being subject specific.

MVCF aims to construct subject specific materialized views

so that any future query posed on the data warehouse can be

answered by fewer materialized views. Thus the first phase of

MVCF is to create subject areas, or domains, comprising

closely related queries with respect to the data accessed by

them. MVCF uses the queries in the Query Log and groups

them based on their similarity in terms of the data accessed by

them. The similarity between any two queries can be

computed using similarity measures like Jaccard, Dice,

Overlap, Cosine etc [24]. These can be computed as given

below:

Jaccard’s Coefficient [24], [25]: This similarity is defined

as the proportion of number of relations in common accessed

by a pair of queries. Let R and S be the set of relations

accessed by the pair of queries Qi and Qj, then the similarity

between queries Qi and Qj, i.e. SIM (Qi, Qj), based on

Jaccard’s coefficient is given as

 ,i j

R S
Sim Q Q

R S






Cosine Similarity [26], [27]: Let Q1, Q2, … , Qn be a set of

queries, where each query Qj can be represented in terms of

relation and weight vector as

Qj = {<R1, w1Qj>, <R2, w2Qj>, … , <Rm, wmQj>}

where R1, R2, … Rm are the relations used in the query Qj and

w1Qj, w2Qj, … , wmQj are the weight vectors, which are defined

as

wiQj = rfiQj × iqfi

where rfiQj is the number of occurrence of relation Ri in Qj, i.e.

the relation frequency in query Qj and iqfi = log (n/qfi), where

n is the total number of queries and qfi is the number of

queries containing relation Ri i.e. the Inverse Query

Frequency.

The similarity between two queries Qi and Qj using the

cosine similarity measure is

1

2 2

1 1

(,)
i j

i j

k

iQ iQi

i j
k k

iQ iQi i

cw cw
sim Q Q

cw cw



 








 

where cwiQi refers to the weight of the ith common relation of

Cij ={r: r Qi  Qj}in query Qi

Hybrid Similarity [26], [28]: This measure is defined as

 
 

1

2 2

1 1 1 1

1 1

,
,

i j

i j

i j

k

i i i j

i

k k

i i

Q Q
SimHybrid Q Q

Max Q Q

CW Q CW Q

W Q W Q



 

 

 



 





 

International Journal of Innovation, Management and Technology, Vol. 4, No. 2, April 2013

193

where |Qi ∩ Qj| is the number of common attributes in

queries Qi and Qj respectively.

OVERLAP Coefficient [29], [30]: The Similarity between

a pair of queries Qi and Qj, i.e. Sim(Qi, Qj), based on the

Overlap Coefficient measure, is given by

| () () |
(,)

(| () |, | () |)

i j

i j

i j

R Q R Q
Sim Q Q

Min R Q R Q




where R(Qi) and R(Qj) are the relations accessed by queries

Qi and Qj respectively.

DICE Coefficient [31], [32]: The Similarity between a pair

of queries Qi and Qj, i.e. Sim(Qi, Qj), based on Dice

Coefficient measure, is given by

2 | () () |
(,)

| () | | () |

i j

i j

i j

R Q R Q
Sim Q Q

R Q R Q






where R(Qi) and R(Qj) are the relations accessed by queries

Qi and Qj respectively.

The above similarity measures can be used to construct the

query similarity matrix. This similarity matrix can be further

used to group closely related queries into cluster queries.

These cluster queries can be formed using clustering

techniques [33] like Agglomerative hierarchical clustering

[25], DBSCAN [27], KMEANS [28], OPTICS [30], Nearest

Neighbor [32]. Each of the clusters created using the above

techniques would contain queries that are strongly related to

each other with respect to the data accessed by them. These

clusters of queries specify the various domains in the data

warehouse. A materialized view would then be constructed

for each such domain.

B. Frequent Queries Identification

MVCF defines a framework for constructing a

materialized view for each domain using the queries therein.

It is possible that all queries in a domain may not be of equal

importance, as they may be accessing data that was rarely

accessed in the past. These queries may not be appropriate for

constructing materialized views and thus need to be pruned

out. On the other hand, queries in a domain accessing similar

data are indicative of the data that is frequently accessed and

therefore need to be identified for each domain. These

queries, referred to as frequent queries, are identified next in

the framework MVCF. The framework suggests that these

frequent queries can be identified using the association rule

mining techniques. A query in a domain is a transaction with

relations in it being the item sets or relation sets. So the

number of transactions is the number of queries in each

domain. Using these transactions, frequent relation sets are

identified with a pre-specified query support threshold.

These frequent relation sets can be identified using the

association rule mining techniques [34] like Apriori [25], FP

Tree [27], Pincer Search [28], DHP [30], DIC [32]. These

identified frequent relation sets consist of relations that have

been frequently accessed by previously posed queries and

thus have a high likelihood of being accessed in future.

MVCF uses these frequent relation sets to identify frequent

queries in each domain. The queries that contain any one of

the frequent relation sets in a domain are identified as

frequent queries. These queries provide indicators to

frequently accessed data and therefore can be considered

appropriate for the construction of materialized views.

C. Optimal Queries Selection

A materialized view aims to improve the query response

time of analytical queries while conforming to the available

space for materialization. It needs to be ensured that this

available space is optimally utilized with respect to the

materialized views stored in it. Thus, a materialized view

should only be constructed using frequent queries that are

profitable with respect to answering future queries. This

necessitates constructing materialized views using frequent

queries that maximize the profit in terms of their containing

information that can provide answers to most future user

queries. Thus frequent queries, which contribute to

maximizing the profit of materialization, are selected from

amongst all the frequent queries in a domain. The queries that

contribute more towards cost, without contributing much

towards the profit, are pruned out. On the other hand,

frequent queries that are profitable and less costly are

selected and used for constructing materialized views. The

framework suggests that these profitable queries, referred to

as optimal queries, can be selected by formulating the

selection problem as a zero-one integer programming

problem [35], [36] with the frequent query being the decision

making variable taking either value 1 or 0 depending on

whether it is profitable or not. The objective is to select

frequent queries that maximize the profit of materialization in

respect of containing information that can provide answers to

maximum numbers of queries while minimizing the cost, due

to various resource constraints like size, CPU usage, memory

utilization, running time etc., associated with them. The

frequent queries having value 1, termed as optimal queries,

are selected for constructing materialized views for the

corresponding domain. Greedy algorithms or evolutionary

algorithms can also be used to select such optimal queries.

D. Optimal Queries Merging

The framework MVCF considers the use of optimal

queries in a domain to construct a materialized view for it.

The domain may contain one or more optimal queries. If

there is a single optimal query then the view over it would be

materialized. In case, multiple optimal queries in a domain,

then either one materialized view is constructed for each

optimal query or a single materialized view is constructed by

merging all optimal queries. In the former case, the number

of materialized view constructed in a domain would be same

as the number of optimal queries in that domain. The frame

work MVCF suggests the latter approach for constructing

materialized views, as the optimal queries in a domain are

closely related and in such scenario constructing materialized

views for each optimal query would lead to sub-optimal

solution.

Merging of optimal queries in a domain should ensure that

no information should be lost while merging. This would

necessitate maximal integration of information produced

from each optimal query. That is, merging of optimal queries

International Journal of Innovation, Management and Technology, Vol. 4, No. 2, April 2013

194

should preserve information in them and the resultant single

materialized view should be meaningful or a full disjunction

[37]. The framework MVCF suggests an existing natural

outer join ordering strategy that defines the order in which

optimal queries should be merged so that the resultant

materialized view is a full disjunction. The natural outer join

ordering can be computed using algorithms like SOJO [38] or

COJO [39]. The optimal queries can then be merged in the

natural outer join order defined by these algorithms. The

resultant merged query is the maximal integration of

information contained in the optimal queries. A materialized

view is then constructed using the merged query.

As prescribed by MVCF, a single materialized view is

constructed for each domain. Thus, the number of

materialized views constructed is the same as the number of

domains in the data warehouse. These materialized views are

stored in the data warehouse and future queries are first

evaluated against these relatively smaller sized materialized

views instead of the large data warehouse. As a result, search

space and volume of data to be processed would be less. This

would lead to considerable reduction in the query response

time and aids in decision making.

The materialized views, so constructed, should be

periodically assessed and recomputed to reflect, and satisfy,

the changing trends in user querying. MVCF suggests that

the materialized views are recomputed in the same manner as

they are constructed using a recent set of previously posed

queries in the QueryLog.

III. MVCS

A Materialized View Construction System (MVCS), based

on the framework MVCF, is presented in [40]. MVCS uses

previously posed queries on the data warehouse to construct

materialized views. First, it computes the similarity between

previously posed queries using Jaccard’s Coefficient [24].

The computed similarities are then used to construct the

similarity matrix. MVCS then groups closely related

previously posed queries into clusters of queries using the

Agglomerative Heirarchical clustering technique [33]. Each

such cluster specifies a subject-specific domain in the data

warehouse. MVCS then identifies frequent relations sets

using the queries in each domain using the Apriori

association rule mining technique [41]. The queries

containing any of these frequent relation sets are identified as

frequent queries in the domain. MVCS formulates the

selection of optimal queries, from among the frequent queries,

in a domain as a zero-one integer programming problem [36].

The frequent queries in the solution having value 1 are

selected as optimal queries. These optimal queries in a

domain are then merged [42]. A materialized view is then

created using this merged query. MVCS constructs a single

materialized view for each domain. An illustrative example

showing the construction of materialized views using the

queries in Query Log is shown in Fig. 2. In Fig. 2, the SQL

queries Q1, Q2, … Q10 in the Query Log are used by MVCS to

construct materialized views. The relations in the FROM

clause of these queries are grouped together, using

agglomerative hierarchical clustering technique, into two

clusters of queries specifying the two domains D1= {Q1, Q3,

Q7, Q8, Q9} and D2 = {Q2, Q4, Q5, Q6, Q10} in the data

warehouse. MVCS then identifies the frequent queries in

each domain using Apriori association rule mining technique.

The frequent queries identified in domain D1 are {Q1, Q3, Q7,

Q8} and the frequent queries identified in domain D2 are {Q2,

Q4, Q5, Q6}. The optimal queries selection in each domain is

formulated as a zero-one integer programming problem.

Those frequent queries having value 1 in the solution are

selected as optimal queries in the respective domain. The

optimal queries selected in domain D1 are {Q1, Q7, Q8} and in

domain D2 are {Q2, Q4, Q5}. These optimal queries, in each

domain, are then merged in natural join order that leads to full

disjunction, as defined by COJO [39]. Materialized views

MV1 and MV2 are thereafter constructed over the merged

query in domains D1 and D2 respectively.

IV. EXPERIMENTAL RESULTS

The experiments were carried out by using a data

warehouse of size 2 GB stored in RDBMS ORACLE 9i

installed on a Pentium 2.3 GHz machine with 512 MB RAM

and 80 GB Hard Disk. MVCS [40], based on the framework

MVCF [23], considered 200 previously posed queries in the

QueryLog. It used 100 queries to construct the materialized

views and the remaining 100 queries were used to validate

the performance of MVCS.

Firstly, the query response time due to materialized views

were evaluated and plotted as a bar graph, shown in Fig. 3.

The bar graph showed how the query response time varied,

with increase in the number of queries, when materialized

views were used and when they were not used.

It can be noted from the graph that the use of materialized

views has led to an improvement in the query response time.

Fig. 2. Materialized view construction using MVCS.

Queries Relations

Q1 A, B, H

Q2 C, D, I, J

Q3 A, H

Q4 D, E, F, J

Q5 D, I, J

Q6 D, E, J

Q7 A, H

Q8 A, B, G, H

Q9 B, F, H

Q10 E, F

Q1, Q3, Q7, Q8 Q2, Q4, Q5, Q6

Q1, Q7, Q8 Q2, Q4, Q5

CREATE MATERIALIZED VIEW MV1

AS

SELECT *

FROM

((Q1 FULL NATURAL OUTER JOIN Q7)

 FULL NATURAL OUTER JOIN Q9)

CREATE MATERIALIZED VIEW MV2

AS

SELECT *

FROM

((Q2 FULL NATURAL OUTER JOIN Q4)

 FULL NATURAL OUTER JOIN Q5)

Domain D1 Domain D2

Query Log

Frequent Queries Frequent Queries

Optimal Queries Optimal Queries

Materialized View Materialized View

Domain

Creation

Frequent Queries

Identification

Optimal Queries

Selection

Optimal Queries

Merging

Agglomerative

Hierarchical Clustering

Q1, Q3, Q7, Q8, Q9 Q2, Q4, Q5, Q6, Q10

Apriori Association

Rule Mining

Zero-One Integer

Programming Problem

Full Disjunction using

COJO

International Journal of Innovation, Management and Technology, Vol. 4, No. 2, April 2013

195

Thus, it can be inferred that MVCS is able to construct

materialized views that result in efficient query processing

and thereby aid in decision-making.

Fig. 3. Query response time with & without materialized views.

Next, in order to observe the extent to which queries are

answered by the materialized views i.e. the number of queries

that are answered 100%, 75%, 50%, 25% and 0%, a bar

graph, shown in Fig. 4, is plotted between the number of

queries answered by materialized views and the number of

queries processed against the data warehouse. It is observed

from the bar graph that materialized views are able to provide

some answers to most queries while a good number of

queries are almost completely (above 50%) answered by

them. Out of the 100 queries posed, materialized views

provide answers to 80 queries. Of these 17, 13, 26 and 24

queries are answered 100%, 75%, 50% and 25% respectively.

The materialized views are unable to provide answers to 20

queries. Thus, it can be said that materialized views are able

to answer reasonably large number of queries.

Further, in order to ascertain the query response time with

increase in the storage space for materialization, a graph of

query response time vs. available storage space is plotted and

is shown in Fig. 5. The graph shows that, as the available

space increases, there is a significant improvement in the

query response time. This may be due to the fact that as the

available storage space increases, more views can be

materialized leading to greater number of queries being

answered. This in turn leads to a reduction in the query

response time.

It can be concluded from the above graphs that the

materialized views constructed by MVCS, based on the

framework MVCF, are capable of providing answers to most

future queries. This in turn would facilitate decision-making.

V. CONCLUSION

In this paper, an architectural framework MVCF that lays

down a phase wise strategy for constructing materialized

views in a data warehouse is presented. This framework

suggests that previously posed queries, which are indicative

of the queries likely to be posed in future, are appropriate for

constructing materialized views. As per MVCF, these queries

are grouped into clusters of queries, based on their similarity

with respect to the data accessed by them. Each such cluster

specifies a domain in the data warehouse. Then frequent

queries are identified in each domain. This is followed up by

selection of optimal queries from amongst these frequent

queries. These optimal queries in each domain are merged

and materialized view is constructed over them. MVCF

constructs domain specific materialized views. Since most

queries posed on the data warehouse are domain specific,

fewer views would be required to answer them. MVCF aims

to provide a mechanism for selecting optimal queries with

respect to providing answers to user queries. Materialized

views constructed using these optimal queries, enables the

queries to be answered using them without requiring their

processing against the data warehouse. As a result, the query

response time would be reduced and decision making would

become more efficient.

The framework MVCF was validated by analyzing the

performance of the system MVCS [40] based on it.

Experiments were performed on MVCS using previously

posed queries on the data warehouse. Results of the

experiments show that MVCS is able to construct

materialized views that are able to reduce the query response

time by providing answers to a reasonably greater number of

queries. This shows that the strategy laid by the framework

MVCF for constructing materialized views can facilitate the

decision making process.

Fig. 5. Query response time vs. available space.

4000000

5000000

6000000

7000000

8000000

0 23769 26145 27895 51664 54040 77809 85788 109557 139409 173494

Available Space

Q
u

e
ry

 R
e
s
p

o
n

s
e
 T

im
e

With Materialized Views

Without Materialized Views

Fig. 4. Queries answered in percentages vs. number of queries.

0

5

10

15

20

25

30

20 40 60 80 100

Number of Queries

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s
 A

n
s
w

e
re

d
 b

y
 M

a
te

ri
a
li

z
e
d

 V
ie

w
s

100%

75%

50%

25%

0%

International Journal of Innovation, Management and Technology, Vol. 4, No. 2, April 2013

196

REFERENCES

[1] W. H. Inmon, Building the Data Warehouse, Third Edition, Wiley

Dreamtech, 2003

[2] B. Shah, K. Ramachandran, and V. Raghavan, “A Hybrid Approach

for Data Warehouse View Selection,” International Journal of Data

Warehousing and Mining, vol. 2, no. 2, pp. 1–37, 2006

[3] S. Chaudhuri and K. Shim, “Including Groupby in Query

Optimization,” in Proc. the International Conference on Very Large

Database Systems, 1994

[4] A. Gupta, V. Harinarayan, and D. Quass, “Generalized Projections: A

Powerful Approach to Aggregation,” in Proc. 21st VLDB conference,

pp. 11-15, 1995

[5] P. O’Neil and G. Graefe, “Multi-Table joins through Bitmapped Join

Indices,” SIGMOD Record, vol. 24, no. 3, pp. 8-11, 1995

[6] N. Roussopoulos, “Materialized Views and Data Warehouse,” 4th

Workshop KRDB-97, Athens, Greece; August 1997

[8] M. Mohania, S. Samtani, J. Roddick, and Y. Kambayashi, “Advances

and Research Directions in Data Warehousing Technology

Australian Journal of Information Systems, 1998

[11]

M. Teschke and A. Ulbrich, “Using Materialized Views to Speed Up

Data Warehousing,” Technical Report, IMMD 6, Universität

Erlangen-Nümberg, 1997

[12]

mplementing Data

Cubes Efficiently,”

[14]

H. Gupta and I.S. Mumick, “Selection of Views to Materialize in a

Data warehouse,”

IEEE Transactions on Knowledge & Data

Engineering, vol. 17, no. 1, pp. 24-43, 2005

[15]

S. Valluri, S. Vadapalli, and K. Karlapalem, “View Relevance Driven

Materrialized View Selection in Data Warehousing Environment,”
 Australian Computer Science Communications, vol. 24, no. 2, pp.

187-196, 2002

[16]

T.

V. Vijay Kumar and A. Ghoshal, “A Reduced Lattice Greedy

Algorithm for Materialized Views Selection,”

Communications in

Computer and Information Science (CCIS), vol. 31, pp. 6-18, 2009

 [18]

T. V. Vijay Kumar, M. Haider, and S. Kumar, “Proposing Candidate

Views for Materialization,”

Communications in Computer and

Information Science (CCIS), vol. 54,

pp.

89-98, 2010

[19]

J. T. Horng, Y. J. Chang, B. J. Liu, and C.Y. Kao, “Materialized View

Selection Using Genetic Algorithms in a Data warehouse System,” in

Proc. the 1999 congress on Evolutionary Computation, Washington

D. C., vol. 3, 1999

 [21]

C. Zhang, X. Yao, and J. Yang, “An Evolutionary Approach to

Materialized Views Selection in a Data Warehouse Environment,”
 IEEE Transactions on Systems, Man and Cybernetics, pp. 282-294
 2001

 [22]

W. Lehner, T. Ruf, and M. Teschke, “Improving Query Response

Time in Scientific Databases Using DataAggregation, In proceedings

of 7th International Conference and Workshop on Database and

Expert Systems Applications, DEXA 96, Zurich, 1996

[23]
 Framework for a Data Warehouse, in Proc.

the 2nd International

Conference on Information and Multimedia Technology

(ICIMT-2010), vol. 3, pp. 165-169, 2010

[24] B. Merkines, C. Cattuto, F. Menczer, D. Benz, A. Hotho, and G.

Stumme, “Evaluating Similarity Measure for Emergent Semantics of

Social Tagiing,” in Proc. 18th International World Wide Web

Conference (WWW 2009), pp. 641-650, 2009

[25] T. V. Vijay Kumar and K. Devi, “Frequent Queries Identification for

Constructing Materialized Views,” in Proc. the 3rd International

Conference on Electronics Computer Technology(ICECT-2011), vol.

6, pp. 177-181, 2011

[26] L. Fu, D. H. Goh, and S. Foo, “Query Clustering using a Hybrid Query

Similarity Measure,” WSEAS Transactions on Computers, vol. 3, no.

3, pp. 700-705. 2004

[27] T. V. Vijay Kumar, A. Goel, and N. Jain, “Mining Information for

Constructing Materialised Views,” International Journal of

Information and Communication Technology, vol. 2, no. 4, pp.

386-405, 2010

[28] T. V. Vijay Kumar and N. Jain, “Selection of Frequent Queries for

Constructing Materialized Views in Data Warehouse,” The IUP

Journal of Systems Management, vol. 8, no. 2, pp. 46-64, May 2010

[29] T. E. Clemons and E. L. Bradley Jr., “A nonparametric measure of the

overlapping coefficient,” Journal of Computational Statistics & Data

Analysis, vol. 34, issue 1, July 28, 2000

[30] T. V. Vijay Kumar, A. Singh, and G. Dubey, “Mining Queries for

Constructing Materialized Views in a Data Warehouse,” Advances in

Intelligent and Soft Computing, vol. 167, pp. 149-159, 2012

[31] L. R. Dice, “Measures of the Amount of Ecologic Association

Between Species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945

[32] T. V. Vijay Kumar, G. Dubey, and A. Singh, “Frequent Queries

Selection for View Materialization,” Advances in Intelligent Systems

and Computing, vol. 177, pp. 521-530, 2012

[33] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: A

Review,” ACM Computing Surveys, vol. 31, no. 3, pp. 264-323

September, 1999

[34] A. Ceglar and J. F. Roddick, “Association Mining,” ACM Computing

Surveys, vol. 38, no. 2, pp. 1-42, July 2006

[35] H. A. Taha, Operations Research: An Introduction, 7th Edition,

Pearson Education, 2003

[36] T. V. Vijay Kumar and K. Devi, “Optimal Queries Selection for

Constructing Materialized Views,” presented at the 40th Annual

Convention of Operational Research Society of India, (A Golden

Jubilee Celebration of ORSI), December 4–6, 2007

[37] C. A. Galindo-Legaria, “Outerjoins as Disjunctions” in Proc.

ACM-SIGMOD International Conference on Managament of Data,

Minneapolis, USA, pp. 348-358, 1994

[38] A. Rajaraman and J. D. Ullman, “Integrating Information by

Outerjoins and Full Disjunctions,” PODS, pp. 238-248, 1996

[39] T. V. Vijay Kumar, A. Shridhar, and A. Ghoshal, “Computing Full

Disjunction using COJO,” Information Technology and Management,

vol. 10, no. 1, pp. 3-20, March 2009

[40] K. Devi and T. V. Vijay Kumar, “Materialized View Selection in Data

Warehouse,” PCTEJCS, pp. 33-41, Jan-June 2007

[41] R. Agarwal and R. Srikant, “Fast Algorithms for Mining Association

rules,” in Proc. International Conference on Very Large Database,

Chile, September, pp 487-499, 1994

[42] T. V. Vijay Kumar and K. Devi, “Materialized View Construction in

Data Warehouse for Decision Making,” International Journal of

Business Information Systems (IJBIS), vol. 11, no. 4, pp.379–396,

2012

T. V. Vijay Kumar received his PhD in the area of databases from School of

Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi,

India after completing his MPhil and MSc in Operational Research and BSc

(hons.) in Mathematics from the University of Delhi, Delhi, India. His

research interests include databases, data warehousing, data mining and soft

computing.

Kalyani Devi received her MTech in Computer Science and Technology

from School of Computer and Systems Sciences, Jawaharlal Nehru

University, New Delhi, India after completing her MCA and BSc (hons.) in

Computer Science from Utkal University, Orissa, India. Her areas of interest

include databases and data warehousing.

International Journal of Innovation, Management and Technology, Vol. 4, No. 2, April 2013

197

[7] T. S. Jung, M. S. Ahn, and W. S. Cho, An Efficient OLAP Query

Processing Technique Using Measure Attribute Indexes, pp. 218-228,

2004.

[10] H. Gupta, V. Harinarayan, V. Rajaraman and J. Ullman, “Index

Selection for OLAP, in Proc. the 13th International Conference on

Data Engineering, ICDE 97, Birmingham, UK, 1997

[13] D. Theodoratos and T. Sellis, “Data Warehouse Configuration,” in

Proc. VLDB, pp. 126-135, Athens, Greece, 1997

 ACM SIGMOD, Montreal, pp. 205-216, 1996

[17] T. V. Vijay Kumar and A. Ghoshal, “Greedy Selection of Materialized

Views,” International Journal of Computer and Communication

Technology (IJCCT), vol. 1, pp. 47-58, 2009

[20] M. Lawrence, “Multiobjective Genetic Algorithms for Materialized

View Selection in OLAP Data Warehouses,” in Proc. GECCO’06,

July 8-12, Seattle Washington, USA, 2006

,”

”

V. Harinarayan, A. Rajaraman and J. D. Ullman, “I

[9] R. Chirkova, A. Y. Halevy, and D. Suciu, “A Formal Perspective on

the View Selection Problem,” in Proc. VLDB, pp 59-68, 2001

T. V. Vijay Kumar and K. Devi, A Materialized View Construction

