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Abstract—Data warehouse stores data accumulated over a 

period of time from disparate data sources for providing 

answers to analytical queries. These queries, which are long and 

complex in nature, have high query response time when 

processed against a large data warehouse. This response time 

can be reduced by constructing materialized views and storing 

them in a data warehouse.  These views need to contain relevant 

and required information for answering future queries, so that 

future queries can be answered in a reduced response time to 

make decision making more efficient. A Materialized Views 

Construction Framework (MVCF), presented in this paper, lays 

down a strategy for constructing materialized views from 

previously posed queries on the data warehouse. The objective 

of MVCF is to enable construction of materialized views that 

are subject-specific and contain frequently accessed  

information that are capable of providing answers to future 

queries. This in turn would facilitate decision making.  

 

Index Terms—Data warehouse, materialized view. 

 

I. INTRODUCTION 

Contemporary business organizations are eager to exploit 

data available in disparate data sources spread across the 

globe. This data, being valuable for decision making, needs 

to be organized in a manner so that decisions can be made 

quicker. Most organizations store this data continuously over 

a period of time in a data warehouse on which analytical 

queries can be posed for decision making [1]. These 

analytical queries are long and complex in nature and, when 

posed against a large data warehouse consume a lot of time 

for processing. Analytical processing being exploratory in 

nature, results in further delay in decision making. Though 

effective solutions exist to represent data for analytical 

queries, the problem of high query response time still needs 

to be addressed adequately [2]. This problem has been 

addressed to some extent using query optimization 

techniques [3], [4] and indexing techniques [5] but these do 

not scale for large amounts of data in the data warehouse. An 

alternative way to address this problem is by storing 

materialized views in a data warehouse [6]. These views 

contain pre-computed aggregate, or summarized, information 

and are stored in a data warehouse for the purpose of 

answering analytical or decision making queries in a reduced 

response time. It eliminates the overheads associated with 

expensive joins and aggregations [7]. Materialized views 
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have several issues associated with them like view selection, 

view maintenance, view evolution and answering queries 

using views [8]. This paper focuses on the view selection 

issue [9]. View selection is concerned with selecting an 

appropriate set of views that improves the query response 

time and fits within the available storage space for 

materialization [9], [10]. It aims to achieve a trade-off 

between the query response time and the available storage 

space [11] in order to ensure optimal performance of the 

system [12], [13]. 

Though materializing all possible views may reduce the 

query response time significantly, it is not feasible to store 

views in the available space for materialization for higher 

dimensional data sets due to the number of views being 

exponential with respect to the number of dimensions. Thus, 

there is a need to select a subset of views from amongst all 

possible views. This selection cannot be done arbitrarily as it 

may result in materialized views having data that may not be 

used for answering queries and relevant data for answering 

queries may not be in the selected materialized views. Further, 

optimal view selection is shown to be an NP-Complete 

problem [12]. Several view selection approaches exist in 

literature, most of which are heuristic based or empirical 

based. Several heuristic based approaches exist for 

materialized view selection with most of them being either 

greedy based [10], [12], [14]-[18] or evolutionary based [19], 

[20], [21]. Empirically, materialized views can be selected by 

monitoring the queries, submitted by users, and assessing 

them on factors like frequency or size of data in order to 

materialize appropriate views [11], [22]. This paper presents 

a framework that lays out a strategy for empirical view 

selection. 

Most existing empirical based approaches for view 

selection are workload driven. Their basis is that past query 

workloads are indicative of the queries likely to be posed in 

future and materialized views constructed using them have a 

greater likelihood of answering future queries. Large 

numbers of queries may be there in the query workload. 

Considering all queries for constructing materialized views 

may not be appropriate as some of these may not be relevant 

and useful, and may not be accessed frequently. They may 

increase the cost without contributing much towards 

answering future queries. Those queries that maximize the 

profit with respect to answering future queries should be 

materialized. The selection of such materialized views is a 

complex problem. This problem is addressed by the 

Materialized View Construction Framework (MVCF), 

presented in this paper, which lays down a strategy for 

constructing materialized views using previously posed 

queries on a data warehouse. The framework objective is to 

enable construction of materialized views that have high 
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likelihood of answering future queries. This paper is a 

revised version of [23].    

The paper is organized as follows: The architectural 

framework MVCF is discussed in Section II. Section III 

briefly discusses a system MVCS based on the framework 

MVCF. Experimental Results are discussed in Section IV 

followed by conclusion in section V. 

 

II. MVCF 

The Materialized View Construction Framework MVCF 

[23] describes a framework for constructing materialized 

views using previously posed queries on the data warehouse. 

This framework assumes that the queries, likely to be posed 

on the data warehouse in future, shall be similar to the queries 

posed on the data warehouse in the past and thus these 

previously posed queries can be used for constructing 

materialized views over a data warehouse. MVCF assumes 

that a Query Log comprising of these previously posed 

queries is maintained. This Query Log would then be used to 

construct materialized views in a data warehouse. MVCF 

aims to construct materialized views that are subject or 

domain specific as most queries in the data warehouse are 

subject specific. MVCF ensures this by grouping closely 

related queries in a Query Log into clusters or groups of 

queries, where each such group specifies a subject area or 

domain in the data warehouse. MVCF then describes a 

mechanism to prune out infrequent and non-optimal queries 

from each domain. MVCF first identifies frequent queries in 

each domain and follows it up by selection of optimal queries 

from amongst these. A merging strategy is specified for 

merging these optimal queries to construct materialized 

views for the respective domain.  This construction of 

materialized views using MVCF is described by four phases 

namely Domain Creation, Frequent Query Identification, 

Optimal Queries Selection and Optimal Queries Merging. 

This framework MVCF [23] is given in Fig. 1. 

 

Fig. 1. Architectural framework MVCF [23]. 

A. Domain Creation 

A data warehouse stores subject specific data [1] with most 

queries posed on the data warehouse, being subject specific. 

MVCF aims to construct subject specific materialized views 

so that any future query posed on the data warehouse can be 

answered by fewer materialized views. Thus the first phase of 

MVCF is to create subject areas, or domains, comprising 

closely related queries with respect to the data accessed by 

them.  MVCF uses the queries in the Query Log and groups 

them based on their similarity in terms of the data accessed by 

them. The similarity between any two queries can be 

computed using similarity measures like Jaccard, Dice, 

Overlap, Cosine etc [24]. These can be computed as given 

below: 

Jaccard’s Coefficient [24], [25]: This similarity is defined 

as the proportion of number of relations in common accessed 

by a pair of queries. Let R and S be the set of relations 

accessed by the pair of queries Qi and Qj, then the similarity 

between queries Qi and Qj, i.e. SIM (Qi, Qj), based on 

Jaccard’s coefficient is given as  
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Cosine Similarity [26], [27]: Let Q1, Q2, … , Qn be a set of 

queries, where each query Qj can be represented in terms of 

relation and weight vector as 

 

Qj = {<R1, w1Qj>, <R2, w2Qj>, … , <Rm, wmQj>} 

 

where R1, R2, … Rm are the relations used in the query Qj and 

w1Qj, w2Qj, … , wmQj are the weight vectors, which are defined 

as 

wiQj =   rfiQj  × iqfi 

 

where rfiQj is the number of occurrence of relation Ri in Qj, i.e. 

the relation frequency in query Qj and iqfi = log (n/qfi), where 

n is the total number of queries and qfi is the number of 

queries containing relation Ri i.e. the Inverse Query 

Frequency.  

The similarity between two queries Qi and Qj using the 

cosine similarity measure is  
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where cwiQi refers to the weight of the ith common relation of 

Cij ={r: r Qi  Qj}in query Qi 

Hybrid Similarity [26], [28]: This measure is defined as 

 
 

1

2 2

1 1 1 1

1 1

,
,

i j

i j

i j

k

i i i j

i

k k

i i

Q Q
SimHybrid Q Q

Max Q Q

CW Q CW Q

W Q W Q



 

 

 



 





 

 

International Journal of Innovation, Management and Technology, Vol. 4, No. 2, April 2013

193



  

where |Qi ∩ Qj| is the number of common attributes in 

queries Qi and Qj respectively. 

OVERLAP Coefficient [29], [30]: The Similarity between 

a pair of queries Qi and Qj, i.e. Sim(Qi, Qj), based on the 

Overlap Coefficient measure, is given by   

 

| ( ) ( ) |
( , )

(| ( ) |, | ( ) |)

i j

i j

i j

R Q R Q
Sim Q Q

Min R Q R Q


  

 

where R(Qi) and R(Qj) are the relations accessed by queries 

Qi and Qj respectively. 

DICE Coefficient [31], [32]: The Similarity between a pair 

of queries Qi and Qj, i.e. Sim(Qi, Qj), based on Dice 

Coefficient measure, is given by   
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where R(Qi) and R(Qj) are the relations accessed by queries 

Qi and Qj respectively. 

The above similarity measures can be used to construct the 

query similarity matrix. This similarity matrix can be further 

used to group closely related queries into cluster queries. 

These cluster queries can be formed using clustering 

techniques [33] like Agglomerative hierarchical clustering 

[25], DBSCAN [27], KMEANS [28], OPTICS [30], Nearest 

Neighbor [32]. Each of the clusters created using the above 

techniques would contain queries that are strongly related to 

each other with respect to the data accessed by them. These 

clusters of queries specify the various domains in the data 

warehouse. A materialized view would then be constructed 

for each such domain. 

B. Frequent Queries Identification 

MVCF defines a framework for constructing a 

materialized view for each domain using the queries therein. 

It is possible that all queries in a domain may not be of equal 

importance, as they may be accessing data that was rarely 

accessed in the past. These queries may not be appropriate for 

constructing materialized views and thus need to be pruned 

out. On the other hand, queries in a domain accessing similar 

data are indicative of the data that is frequently accessed and 

therefore need to be identified for each domain. These 

queries, referred to as frequent queries, are identified next in 

the framework MVCF. The framework suggests that these 

frequent queries can be identified using the association rule 

mining techniques. A query in a domain is a transaction with 

relations in it being the item sets or relation sets. So the 

number of transactions is the number of queries in each 

domain. Using these transactions, frequent relation sets are 

identified with a pre-specified query support threshold. 

These frequent relation sets can be identified using the 

association rule mining techniques [34] like Apriori [25], FP 

Tree [27], Pincer Search [28], DHP [30], DIC [32]. These 

identified frequent relation sets consist of relations that have 

been frequently accessed by previously posed queries and 

thus have a high likelihood of being accessed in future. 

MVCF uses these frequent relation sets to identify frequent 

queries in each domain. The queries that contain any one of 

the frequent relation sets in a domain are identified as 

frequent queries. These queries provide indicators to 

frequently accessed data and therefore can be considered 

appropriate for the construction of materialized views. 

C. Optimal Queries Selection 

A materialized view aims to improve the query response 

time of analytical queries while conforming to the available 

space for materialization. It needs to be ensured that this 

available space is optimally utilized with respect to the 

materialized views stored in it.  Thus, a materialized view 

should only be constructed using frequent queries that are 

profitable with respect to answering future queries. This 

necessitates constructing materialized views using frequent 

queries that maximize the profit in terms of their containing 

information that can provide answers to most future user 

queries. Thus frequent queries, which contribute to 

maximizing the profit of materialization, are selected from 

amongst all the frequent queries in a domain. The queries that 

contribute more towards cost, without contributing much 

towards the profit, are pruned out. On the other hand, 

frequent queries that are profitable and less costly are 

selected and used for constructing materialized views. The 

framework suggests that these profitable queries, referred to 

as optimal queries, can be selected by formulating the 

selection problem as a zero-one integer programming 

problem [35], [36] with the frequent query being the decision 

making variable taking either value 1 or  0 depending on 

whether it is profitable or not. The objective is to select 

frequent queries that maximize the profit of materialization in 

respect of containing information that can provide answers to 

maximum numbers of queries while minimizing the cost, due 

to various resource constraints like size, CPU usage, memory 

utilization, running time etc., associated with them.   The 

frequent queries having value 1, termed as optimal queries, 

are selected for constructing materialized views for the 

corresponding domain. Greedy algorithms or evolutionary 

algorithms can also be used to select such optimal queries. 

D. Optimal Queries Merging 

The framework MVCF considers the use of optimal 

queries in a domain to construct a materialized view for it. 

The domain may contain one or more optimal queries. If 

there is a single optimal query then the view over it would be 

materialized. In case, multiple optimal queries in a domain, 

then either one materialized view is constructed for each 

optimal query or a single materialized view is constructed by 

merging all optimal queries. In the former case, the number 

of materialized view constructed in a domain would be same 

as the number of optimal queries in that domain. The frame 

work MVCF suggests the latter approach for constructing 

materialized views, as the optimal queries in a domain are 

closely related and in such scenario constructing materialized 

views for each optimal query would lead to sub-optimal 

solution. 

Merging of optimal queries in a domain should ensure that 

no information should be lost while merging. This would 

necessitate maximal integration of information produced 

from each optimal query. That is, merging of optimal queries 
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should preserve information in them and the resultant single 

materialized view should be meaningful or a full disjunction 

[37]. The framework MVCF suggests an existing natural 

outer join ordering strategy that defines the order in which 

optimal queries should be merged so that the resultant 

materialized view is a full disjunction. The natural outer join 

ordering can be computed using algorithms like SOJO [38] or 

COJO [39]. The optimal queries can then be merged in the 

natural outer join order defined by these algorithms. The 

resultant merged query is the maximal integration of 

information contained in the optimal queries. A materialized 

view is then constructed using the merged query.  

As prescribed by MVCF, a single materialized view is 

constructed for each domain. Thus, the number of 

materialized views constructed is the same as the number of 

domains in the data warehouse.  These materialized views are 

stored in the data warehouse and future queries are first 

evaluated against these relatively smaller sized materialized 

views instead of the large data warehouse. As a result, search 

space and volume of data to be processed would be less. This 

would lead to considerable reduction in the query response 

time and aids in decision making. 

The materialized views, so constructed, should be 

periodically assessed and recomputed to reflect, and satisfy, 

the changing trends in user querying. MVCF suggests that 

the materialized views are recomputed in the same manner as 

they are constructed using a recent set of previously posed 

queries in the QueryLog. 

 

III. MVCS 

A Materialized View Construction System (MVCS), based 

on the framework MVCF, is presented in [40]. MVCS uses 

previously posed queries on the data warehouse to construct 

materialized views. First, it computes the similarity between 

previously posed queries using Jaccard’s Coefficient [24]. 

The computed similarities are then used to construct the 

similarity matrix. MVCS then groups closely related 

previously posed queries into clusters of queries using the 

Agglomerative Heirarchical clustering technique [33]. Each 

such cluster specifies a subject-specific domain in the data 

warehouse. MVCS then identifies frequent relations sets 

using the queries in each domain using the Apriori 

association rule mining technique [41]. The queries 

containing any of these frequent relation sets are identified as 

frequent queries in the domain. MVCS formulates the 

selection of optimal queries, from among the frequent queries, 

in a domain as a zero-one integer programming problem [36]. 

The frequent queries in the solution having value 1 are 

selected as optimal queries. These optimal queries in a 

domain are then merged [42]. A materialized view is then 

created using this merged query. MVCS constructs a single 

materialized view for each domain. An illustrative example 

showing the construction of materialized views using the 

queries in Query Log is shown in Fig. 2. In Fig. 2, the SQL 

queries Q1, Q2, … Q10 in the Query Log are used by MVCS to 

construct materialized views. The relations in the FROM 

clause of these queries are grouped together, using 

agglomerative hierarchical clustering technique, into two 

clusters of queries specifying the two domains D1= {Q1, Q3, 

Q7, Q8, Q9} and D2 = {Q2, Q4, Q5, Q6, Q10} in the data 

warehouse.  MVCS then identifies the frequent queries in 

each domain using Apriori association rule mining technique. 

The frequent queries identified in domain D1 are {Q1, Q3, Q7, 

Q8} and the frequent queries identified in domain D2 are {Q2, 

Q4, Q5, Q6}. The optimal queries selection in each domain is 

formulated as a zero-one integer programming problem. 

Those frequent queries having value 1 in the solution are 

selected as optimal queries in the respective domain. The 

optimal queries selected in domain D1 are {Q1, Q7, Q8} and in 

domain D2 are {Q2, Q4, Q5}. These optimal queries, in each 

domain, are then merged in natural join order that leads to full 

disjunction, as defined by COJO [39]. Materialized views 

MV1 and MV2 are thereafter constructed over the merged 

query in domains D1 and D2 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

IV. EXPERIMENTAL RESULTS 

The experiments were carried out by using a data 

warehouse of size 2 GB stored in RDBMS ORACLE 9i 

installed on a Pentium 2.3 GHz machine with 512 MB RAM 

and 80 GB Hard Disk. MVCS [40], based on the framework 

MVCF [23], considered 200 previously posed queries in the 

QueryLog. It used 100 queries to construct the materialized 

views and the remaining 100 queries were used to validate 

the performance of MVCS.  

Firstly, the query response time due to materialized views 

were evaluated and plotted as a bar graph, shown in Fig. 3. 

The bar graph showed how the query response time varied, 

with increase in the number of queries, when materialized 

views were used and when they were not used.  

It can be noted from the graph that the use of materialized 

views has led to an improvement in the query response time. 

Fig. 2. Materialized view construction using MVCS. 

Queries Relations  

Q1 A, B, H 

Q2 C, D, I, J 

Q3 A, H 

Q4 D, E, F, J 

Q5 D, I, J 

Q6 D, E, J 

Q7 A, H 

Q8 A, B, G, H 

Q9 B, F, H 

Q10 E, F 

 

Q1, Q3, Q7, Q8 Q2, Q4, Q5, Q6 

 

Q1, Q7, Q8 Q2, Q4, Q5 

 

CREATE MATERIALIZED VIEW MV1 

AS 

SELECT *  

FROM  

((Q1 FULL NATURAL OUTER JOIN Q7)  

       FULL NATURAL OUTER JOIN Q9) 

 

CREATE MATERIALIZED VIEW MV2 

AS 

SELECT *  

FROM  

((Q2 FULL NATURAL OUTER JOIN Q4)  

       FULL NATURAL OUTER JOIN Q5) 
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Thus, it can be inferred that MVCS is able to construct 

materialized views that result in efficient query processing 

and thereby aid in decision-making. 

 

 
Fig. 3. Query response time with & without materialized views. 

 

Next, in order to observe the extent to which queries are 

answered by the materialized views i.e. the number of queries 

that are answered 100%, 75%, 50%, 25% and 0%, a bar 

graph, shown in Fig. 4, is plotted between the number of 

queries answered by materialized views and the number of 

queries processed against the data warehouse. It is observed 

from the bar graph that materialized views are able to provide 

some answers to most queries while a good number of 

queries are almost completely (above 50%) answered by 

them. Out of the 100 queries posed, materialized views 

provide answers to 80 queries. Of these 17, 13, 26 and 24 

queries are answered 100%, 75%, 50% and 25% respectively.  

The materialized views are unable to provide answers to 20 

queries. Thus, it can be said that materialized views are able 

to answer reasonably large number of queries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Further, in order to ascertain the query response time with 

increase in the storage space for materialization, a graph of 

query response time vs. available storage space is plotted and 

is shown in Fig. 5. The graph shows that, as the available 

space increases, there is a significant improvement in the 

query response time. This may be due to the fact that as the 

available storage space increases, more views can be 

materialized leading to greater number of queries being 

answered. This in turn leads to a reduction in the query 

response time.   

It can be concluded from the above graphs that the 

materialized views constructed by MVCS, based on the 

framework MVCF, are capable of providing answers to most 

future queries. This in turn would facilitate decision-making. 

 

V. CONCLUSION 

In this paper, an architectural framework MVCF that lays 

down a phase wise strategy for constructing materialized 

views in a data warehouse is presented. This framework 

suggests that previously posed queries, which are indicative 

of the queries likely to be posed in future, are appropriate for 

constructing materialized views. As per MVCF, these queries 

are grouped into clusters of queries, based on their similarity 

with respect to the data accessed by them. Each such cluster 

specifies a domain in the data warehouse. Then frequent 

queries are identified in each domain. This is followed up by 

selection of optimal queries from amongst these frequent 

queries. These optimal queries in each domain are merged 

and materialized view is constructed over them. MVCF 

constructs domain specific materialized views. Since most 

queries posed on the data warehouse are domain specific, 

fewer views would be required to answer them. MVCF aims 

to provide a mechanism for selecting optimal queries with 

respect to providing answers to user queries. Materialized 

views constructed using these optimal queries, enables the 

queries to be answered using them without requiring their 

processing against the data warehouse. As a result, the query 

response time would be reduced and decision making would 

become more efficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The framework MVCF was validated by analyzing the 

performance of the system MVCS [40] based on it.  

Experiments were performed on MVCS using previously 

posed queries on the data warehouse. Results of the 

experiments show that MVCS is able to construct 

materialized views that are able to reduce the query response 

time by providing answers to a reasonably greater number of 

queries. This shows that the strategy laid by the framework 

MVCF for constructing materialized views can facilitate the 

decision making process. 

Fig. 5. Query response time vs. available space. 
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Fig. 4. Queries answered in percentages vs. number of queries. 
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