

Abstract—In this paper we develop an algorithm of

translation between two models for specifying real-time systems.

The first model is the timed automata model and the second is

the Durational Action Timed Automaton star (DATA*). Our

approach is to interpret the behavior described by DATA *’s to

Timed Automata. The main difference between the two models

is the assumption on the actions, in the first model the actions

are assumed atomic and have null durations, for the second the

actions are assumed non-atomic and non-null durations,

through the true concurrency semantics.

Index Terms—Real-time systems, true concurrency

semantics, actions duration, automata theory, LOTOS.

I. INTRODUCTION

The design of real-time systems, is a very important

problem today. This design requires methods and tools for

formal specification to ensure the unambiguous specification

and ensure smooth functioning of their properties. The

behavior of such a system is described by the actions

performed during its execution. Several formalisms and

languages were defined to describe their behavior such as

process algebras CCS[1], LOTOS[2] and their temporal

extensions TCCS[3], RT-LOTOS[4], and D-LOTOS[5] etc.

The formal verification based on the model known as

model checking[6] verification is a process used to

demonstrate the functional correctness of a software or

hardware design, generally described using a high-level

language (or formal) with a well defined operational

semantics.

We are interested in our approach to two model

specifications: timed automata[7], [8], and DATA*[9], [10],

this last was introduced with an aim of take into account the

non-atomicity structural and temporal of actions. The idea is

based on the principle of maximality semantics[11], [12] in

which only the beginnings of actions are modeled, and where

several actions can occur simultaneously. The purpose of

execution actions being captured by the corresponding

durations, this will allow other types of properties related to

the quantitative aspects of behavior, such as maximal border

of execution of a given trace, to be verified. In addition to the

DATA* allow to take into account the main features of

Manuscript received September 30, 2012; revised November 20, 2012.

Maarouk Toufik Messaoud is with the Department of Computer Science

and Mathematics, University Abbes Laghrour, Khenchela, Algeria. Member

in the laboratory "Modeling and implementation of complex systems",

University Mentouri (e-mail: toumaarouk@ yahoo.fr).

Saidouni Djamel Eddine is with the Department of Computer Science,

University Mentouri, Constantine, Algeria. Team Leader "formal

conception of complex systems” in the laboratory "Modeling and

implementation of complex systems", University Mentouri (e-mail:

saidounid@ yahoo.fr).

real-time systems, namely temporal constraints and the

notion of urgency actions. On the other hand the model of

DATA* represents the underlying model specification

described in a D-LOTOS, which is represents a formal

language which escapes the assumption of atomistic

structural and temporal of actions, it incorporates both the

temporal constraints and the durations of actions.

The timed automata(TA), is a formalism for specifing

dense real-time systems. This formalism extends classical

automata with a set of real-valued variables -called clocks-

the increase synchronously with time and associates guard

and update operations with every transition. Each location is

constrained by an invariand, which restricts the possible

values of the clocks for being in the state which can then

enforce an transition to be taken.

The rest of the paper is divided as follows: in the next

section we recall the definition and basic facts about TA and

DATA*. Section 3 introduce a methodology of interpretation

of DATA* in TA. The Section 4 contains an algorithm of

transformation of the DATA* to TA, and the proof of

termination of this algorithm and that complexity. Finally in

section 4 we conclude.

II. PRELIMINARIES

A. Timed Automata

Timed automata, are widely used model for the study and

analysis of timed systems[13]. A TA is a tuple A =(X, Q, qinit,

Σ,→A, Inv) where:

 X is a finite set of clocks,
 Q is a finite set of locations,
 qinit ∈ Q is the initial location,
 Σ is an alphabet of actions,
 →A ⊆ Q×C(x)×Σ×2X×Q, is a finite set of transitions, a

tuple (q,g,a,r,q’) ∈ → A (we write:q
rag ,,

q’)
represents an transition from q to q′ with action a, g is
the guard and r is the set of clocks to be reset to 0. A
guard is used to specify when a transition can be
performed,

 Inv : Q→C(x) is a function that assigns an invariant to
each location, and contains usually only atomic
formulas of the form x≤c or x<c.

The semantics of a TA is given by a timed transition

system (TTS). A TTS is a tuple (S,sinit , Σ,→) where:

 S= {(q,v) ∣q∈Q and v∈ xR with v⊧Inv(q)}
 sinit =(qinit,v₀)
 →⊆ S×(Σ×R₊)×S is a set of transition (we write also :

q
e

q′), contain two form of transition :
-Delay transitions : (q,v) →(q’,v+d), if v+d⊧Inv(q) with
d≤d.

Formal Verification of Real-Time Systems Using a True

Concurrency Semantics

Maarouk Toufik Messaoud and Saidouni Djamel Eddine

International Journal of Innovation, Management and Technology, Vol. 4, No. 1, February 2013

62DOI: 10.7763/IJIMT.2013.V4.358

 -Action transitions:(q,v) →(q’,v’), if ∃ q
rag ,,

q’
such the v⊧g, v’=v[r←0] and v’⊧Inv(q’)

A configuration of the system is a pair (q,v), where q is a

location of the automaton and v is a valuation of the variables.

The initial configuration is (q₀,v₀) where all clocks values are

equal to 0 in v₀.

B. DATA*s Model

DATA* model is defined in ordre to take into accumt

temporal contraints and urgency contraints present in

real-time systems.

Let H, ranged over x,y… be a set of clocks with

nonnegative values (in a time domain T). The set Фt(H) of

temporal constraints over H is defined by the syntax γ::= x~ t,

where x is a clock in H, ~∈{=, <,>,≤,≥} and t ∈T.

A DATA* A is a tuple (S,LS, s0,H, T) where:

1) S is a finite set of states,

2) LS : S → (H)
fn

t2

is a function which corresponds to each

state s the set F of ending conditions of actions possibly

in execution in s,

3) s0 ∈ S is the initial state,

4) H is a finite set of clocks, and

5) T ⊆ S×
 (H)

fn
t2

×

 (H)
fn

t2

×Act×H×S is the set of

transitions. A transition(s,G,D, a, x,s’) represents switch

from state s to state s0, by starting execution of action a

and resetting clock x. G is the corresponding guard

which must be satisfied to fire this transition. D is the

corresponding deadline which requires, at the moment of

its satisfaction, that action a must occur.

The semantics of a DATA* A =(S,LS,s0,H,T) is defined by

associating to it an infinite transitions system SA over ActT.

A state of SA(or configuration) is a pair <s,v> such as s is a

state of A and v is a valuation for H. A configuration <s0,v0>

is initial if s0 is the initial state of A and x∈H, v0(x) = 0.

Fig. 1. Example of DATA*.

III. TIMED AUTOMATA WITH DURATION

In [14], it was introduced a methodology of interpretation

of DATA* in TA. This interpretation allows to verify

DATA* by using UPPAAL [15].

Let us consider the behavior expression E=a;b;stop,

assuming that the actions a and b were not null durations and

have the respective durations 10,12. Let us suppose that the

action a can start only in the first three units of time and b in

four units of time, the bebavior of E is given in Fig. 2.

Fig. 2. DATA* represent execution of two successive actions.

From the initial state s0, the action a can begin its execution

while respecting the condition(c≤ 3), which means that a can

always begin its execution if a particular clock did not reach

value 3 units yet since the sensitization of the system. The

system passes in the state s1 and cannot leave before the

ending of the action a, in this state the action a is potentially

in execution. The same reasoning applies for the action b.

The transition from s0 to s1 can be represented in TA by the

transition s0
 xcabegin ,3),(s1 (this transition expresses the

beginning of the action a, the guard over the deadline of the

offer, and x is the clock to be reset in zero by this transition to

count the execution time of a). Once the system is in the state

s1 he cannot leave it neither before the action a finished nor

after the expiration of the deadline of affer of the action b.

The action b can obviously conply only if the action a

finished it execution. The approach consists in modelling an

action which has two optional parameters: a deadline of offer

and a duration of execution with an timed automaton

containing :

 A transition to express the beginning of the action
 A state, where the system lives during the execution of

the action.

The guard of the next transition is used to capture, at the

same time, the end of the action and the beginning of the next

action (the clock x will be reset in 0 once again we say that it

will be reused for action b). Finally we obtain the timed

automaton representing the behavior E in the Fig. 3.

Fig. 3. Timed automaton corresponding DATA*.

By comparing both models illustrated by both Fig. 2 and

Fig. 3, we can notice that both express the same behavior

without for the timed automaton we lost the information at

the end of the action b. It is evident that it is impossible to

capture the end of the last action without adding a new

transition. For this, it was consider that all the processes use

necessarily the particular action to mark their ends. And so

we obtain the behavior illustrated by the following Fig. 4.

Fig. 4. Adding the action .

Now we consider the parallel case, the system S is

composed of two subsystems S1 and S2 running in parallel

and synchronizing on an action d. The subsystem S1

performs the action a followed by d, while S2 performs the

action b followed by d.

Suppose that the actions a, b and d have the respective

durations 10, 12 and 4. The temporal restriction of the

domain of sensitization of action d is 5 and 4 time units

according the source of d from the S1 or S2. The DATA *

corresponding to the system S is given by the Fig. 5.

International Journal of Innovation, Management and Technology, Vol. 4, No. 1, February 2013

63

Fig. 5. DATA* of system S.

Applying the above reasoning, we obtain the automaton

shown in Fig. 6

Fig. 6. Timed automaton generated.

The same reasoning applies for the interpretation of the

urgency by timed automaton. The expression of the urgency

in timed automata is done using the invariants.

IV. ALGORITHM OF TRANSFORMATION OF THE DATA* IN

TA

This section we propose an algorithm for transformation

DATA* to TA. The objective of this transformation is the

exploitation of the TA for possible formal verification using

the model checker UPPAAL.

A. Algorithm DATA*2TA

Algorithm DATA*2TA Translate DATA* to TA
Input: DAT A* (S,Ls, s0,H, TD)
Output: T A(Q,Act, q0,X,E, Inv)
q0:= s0; // intial location
Q:={q0}; // set of location
X:= // set of clocks
Act:= //alphabet of actions
For all transition t ∈ TD

// t: transition of form si
xDG ,,,

 si+1

//initialization parameters for each transion and sets of
output TA

qs:=t.si; qt:=t.si+1;
 a:=t.α; x:=t.x;
 Q:=Q∪{qs,qt};
 Act:=Act∪{a}
 X:=X∪{x};
 G:=t.G; D:=t.D;
 if (D=∅) then

 //the current action is not urgent
 I:=∅;
 renameClocks(G,x);

// Rename the clocks in G with x
Condition:=G;

 else
 I:=Invariant(G,D);
 condition:=G/D∧Pi(D)
 endif
 e:=(qs,qt,a,x,condition);
 Inv:=Inv∪{(I,qt)};
 E:=E∪e;
 endfor
 //Get the duration of execution of the last action in the
model
 C:=ExtractDuration(qt,Ls);
 Act:=Act∪{} // Last transition : action δ
 x:=get(H\X) //clock for δ
 X:=X∪{x};
 E:=E∪(qt,q,,x,C);

 TA:=(Act,Q,q₀,X,E,Inv) //In output the TA
 return TA;

 end.

B. Functioning of the Algorithm

The algorithm of transformation of the DATA* in TA gets

in input a DATA* represented by: a set of state S, a function

Ls. An initial state s₀, a finite set of clocks, and TD set of

transitions of the form s
xDG ,,,

s’.The temporal

constraint G(respectively D) is described as follows :

di∼x∼ds such as: di,ds∈ℝ and ∼∈{<,≤} and di∼x, x∼ds∈

G (respectively D). For a urgency constraint D (D≠):

G/D=di∼x∼ds such as =di∼x∼ds ⊧GD

Pi(D)= di∼x ; Ps(D)= x∼ds

In out the algorithm produces a TA constructed as the

following way :

 At first the initial state of the TA it is the same initial
state of the DATA*

 For every transition of the form s
xDG ,,,

s’ in
DATA*: The algorithm begins by initializing the
starting state s, the state arrived s’, the current action α
and the clock x.

 Get the two temporal constraints: G (guard), D
(deadline)

 Updating the sets (Q, Act, H), and the set E of transitions
of the TA<s,s’,a,x,G/D ∧ Pi(D)>∈E, the invariant
I(s)=Ps(D)

If the current action is not urgent thus the urgency

constraint D is empty then the construction of the transition

of the TA is as follows:

 Both states of starts and to arrive already are to initialize
 Absence of the invariant on the state to arrive
 The guard G of the DATA* becomes a condition on

transition

The function renameClocks(G,x), allows to rename the

International Journal of Innovation, Management and Technology, Vol. 4, No. 1, February 2013

64

clock of type c in DATA* by the clock x in the constraint G.

because the time for a clock in DATA* cannot elapse before

the assigning of this clock to an action, it is for this reason

there that the system is increased with the clock c(initialized

dices the sensitization of system) to count the time before the

onset of any action. On the other hand, the clocks of a TA

begin to count the time dices the sensitization of the system.

So, we can omit the clock c and replace it with x without

affecting semantics of the model. If the action is urgent: The

invariant is calculated from the urgency constraint D and the

guard G. In the last step it is always necessary added the

action δ to the TA to be able to capture the end of the last

action of DATA*. The function ExtractDurtion(qt,Ls) it used

to calculate the duration of the last action. Finally the

algorithm returns the timed automaton TA.

C. Termination

The following theorem establishes the terminate of the

algorithm DATA*2TA, in order for Algorithm to be correct

the termination condition must ensure that when the

algorithm terminates, it givens timed automaton.

1) Theorem 1(termination): The algorithm DATA*2TA

terminate

Proof : To demonstrate this point, let us remind that the

DATA* in input represents a finished semantic model,that is

the number of state in the model is determined, by

construction thus the ensemle of the transition TD is finished,

what assures and guarantees the terminate of our algorithm.

D. Complexity

We show that the time complexity of our algorithm for

transformation of DATA*2TA.

1) Theorem 2(complexity): Given an DATA*, to

transform the DATA* into timed automaton is a linear

problem in number of transitions.

Proof: We consider a DATA* (which does not contain

either diagonal constraints or constraints of update). The size

of TA built is the same that the size of the DATA* more the

transition of the action δ and the last state. As the size of the

DATA* is linear, the total size of construction is thus linear.

V. CONCLUSION

In this paper, we have developed an algorithm which

produces an TA from DATA*. We also prove the guarantees

termination of the algorithm and its complexity. The main

interest of the model of the DATA* it is the use of semantics

of maximality which allows the explicit expression of

durations, and it supports temporal constraints including

urgency of actions. Thus, correctness properties relative to

system specified can be checked on maximality-based.

REFERENCES

[1] R. Milner, Communication and concurrency, Prentice Hall, 1989.

[2] ISO8807, “LOTOS, a formal description technique based on the

ordering of observational behaviour,” ISO, November 1988.

[3] F. Moller, C. Tofts, “A temporal calculus of communicating systems,”

in J. C. Baeten and J. W. Klop, editors, Concur, LNCS, Springer-Verlag,

vol. 458, pp. 401-415, 1990.

[4] J. P. Courtiat, M. S. D. Camargo, and D. E. Saidouni, “RT-LOTOS:

LOTOS temporisé pour la spécification de systèmes temps réel,” in

Proc. Ingénierie des Protocoles (CFIP'93), Hermes, pp. 427-441,

1993.

[5] D. E. Saidouni and J. P. Courtiat, “Prise en compte des durées d'action

dans les algèbres de processus par l'utilisation de la sémantique de

maximalité,” in Ingénierie Des Protocoles (CFIP'2003). Hermes,

France, 2003.

[6] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification

of finite state concurrent systems using temporal logic specifications,”

ACM Transactions on Programming Languages and Systems, vol. 8,

no. 2, pp. 244-263, April 1986.

[7] R. Alur, “Techniques for automatic verification of real time systems,”

Ph. D. disseertation, Stanford University, Stanford, CA, USA, 1992.

[8] R. Alur and D. Dill, “A theory of timed automata,” TCS, vol. 126,

pp.183-235, 1994.

[9] D. E. Saidouni and N. Belala, “Actions duration in timed models,” in

International Arab Conference on Information Technology

(ACIT'2006), Yarmouk University, Irbid, Jordan, December 2006.

[10] N. Belala and D. E. Saidouni, “Non-atomicity in timed models,” in

International Arab Conference on Information Technology

(ACIT'2005), Al-Isra Private University, Jordan, 2005.

[11] D. E. Saidouni, “Sémantique de maximalité: Application au

raffinement d'actions en LOTOS,” Ph. D. dissertation, LAAS-CNRS,

Toulouse, France, 1996.

[12] D. E. Saidouni and J. P. Courtiat, “Maximal trees,” Research Report

95192, LAAS-CNRS, 7 av. du Colonel Roche, 31077 Toulouse Cedex

France, June 1995.

[13] R. Alur and D. Dill, “Automata for modeling real-time systems,” in

Proc. 17th International Colloquium on Automata, Languages and

Programming (ICALP'90), Lecture Notes in Computer Science,

Springer-Verlag, vol. 443, pp.322-335, 1990.

[14] D. E. Saidouni, A. Boumaza, and S. Guellati, “Prise en compte des

durées d'actions dans la vérification des automates temporisés,” in Proc.

1st International Conference on Information Systems and

Technologies ICIST'2011, Algeria, Tebessa University, April 2011.

[15] K. Larsen, A. David, G. Behrmann, and W. Yi, “A tool architecture for

the next generation of uppaal,” Technical report, Uppsala University,

2003.

International Journal of Innovation, Management and Technology, Vol. 4, No. 1, February 2013

65

