
  

 

Abstract—In this paper we develop an algorithm of 

translation between two models for specifying real-time systems. 

The first model is the timed automata model and the second is 

the Durational Action Timed Automaton star (DATA*). Our 

approach is to interpret the behavior described by DATA *’s to 

Timed Automata. The main difference between the two models 

is the assumption on the actions, in the first model the actions 

are assumed atomic and have null durations, for the second the 

actions are assumed non-atomic and non-null durations, 

through the true concurrency semantics. 

 

Index Terms—Real-time systems, true concurrency 

semantics, actions duration, automata theory, LOTOS. 

I. INTRODUCTION 

The design of real-time systems, is a very important 

problem today. This design requires methods and tools for 

formal specification to ensure the unambiguous specification 

and ensure smooth functioning of their properties. The 

behavior of such a system is described by the actions 

performed during its execution. Several formalisms and 

languages were defined to describe their behavior such as 

process algebras CCS[1], LOTOS[2] and their temporal 

extensions TCCS[3], RT-LOTOS[4], and D-LOTOS[5] etc.  

The formal verification based on the model known as 

model checking[6] verification is a process used to 

demonstrate the functional correctness of a software or 

hardware design, generally described using a high-level 

language (or formal) with a well defined operational 

semantics.  

We are interested in our approach to two model 

specifications: timed automata[7], [8], and DATA*[9], [10], 

this last was introduced with an aim of take into account the 

non-atomicity structural and temporal of actions. The idea is 

based on the principle of maximality semantics[11], [12] in 

which only the beginnings of actions are modeled, and where 

several actions can occur simultaneously. The purpose of 

execution actions being captured by the corresponding 

durations, this will allow other types of properties related to 

the quantitative aspects of behavior, such as maximal border 

of execution of a given trace, to be verified. In addition to the 

DATA* allow to take into account the main features of 
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real-time systems, namely temporal constraints and the 

notion of urgency actions. On the other hand the model of 

DATA* represents the underlying model specification 

described in a D-LOTOS, which is represents a formal 

language which escapes the assumption of atomistic 

structural and temporal of actions, it incorporates both the 

temporal constraints and the durations of actions. 

The timed automata(TA), is a formalism for specifing 

dense real-time systems. This formalism extends classical 

automata with a set of real-valued variables -called clocks- 

the increase synchronously with time and associates guard 

and update operations with every transition. Each location is 

constrained by an invariand, which restricts the possible 

values of the clocks for being in the state which can then 

enforce an transition to be taken.  

The rest of the paper is divided as follows: in the next 

section we recall the definition and basic facts about TA and 

DATA*. Section 3 introduce a methodology of interpretation 

of DATA* in TA. The Section 4 contains an algorithm of 

transformation of the DATA* to TA, and the proof of 

termination of this algorithm and that complexity. Finally in 

section 4 we conclude.  

 

II. PRELIMINARIES  

A. Timed Automata  

Timed automata, are widely used model for the study and 

analysis of timed systems[13]. A TA is a tuple A =(X, Q, qinit, 

Σ,→A, Inv) where: 

 X is a finite set of clocks, 
 Q is a finite set of locations, 
 qinit ∈ Q is the initial location, 
 Σ is an alphabet of actions, 
 →A ⊆ Q×C(x)×Σ×2X×Q, is a finite set of transitions, a 

tuple (q,g,a,r,q’) ∈ → A (we write:q  
rag ,,

q’) 
represents an transition from q to q′ with action a, g is 
the guard and r is the set of clocks to be reset to 0. A 
guard is used to specify when a transition can be 
performed, 

 Inv : Q→C(x) is a function that assigns an invariant to 
each location, and contains usually only atomic 
formulas of the form x≤c or x<c. 

The semantics of a TA is given by a timed transition 

system (TTS). A TTS is a tuple (S,sinit , Σ,→) where: 

 S= {(q,v) ∣q∈Q and v∈ xR with v⊧Inv(q)} 
 sinit =(qinit,v₀) 
  →⊆ S×(Σ×R₊)×S is a set of transition ( we write also : 

q 
e

q′), contain two form of transition : 
-Delay transitions : (q,v) →(q’,v+d), if v+d⊧Inv(q) with 
d≤d. 
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 -Action transitions:(q,v) →(q’,v’), if ∃ q  
rag ,,

q’ 
such the v⊧g, v’=v[r←0] and v’⊧Inv(q’) 

A configuration of the system is a pair (q,v), where q is a 

location of the automaton and v is a valuation of the variables. 

The initial configuration is (q₀,v₀) where all clocks values are 

equal to 0 in v₀. 

B. DATA*s Model  

DATA* model is defined in ordre to take into accumt 

temporal contraints and urgency contraints present in 

real-time systems.  

Let H, ranged over x,y… be a set of clocks with 

nonnegative values (in a time domain T). The set Фt(H) of 

temporal constraints over H is defined by the syntax  γ::= x~ t, 

where x is a clock in H, ~∈{=, <,>,≤,≥} and t ∈T. 

A DATA* A is a tuple (S,LS, s0,H, T) where: 

1) S is a finite set of states, 

2) LS : S →  (H)
fn

t2


is a function which corresponds to each 

state s the set F of ending conditions of actions possibly 

in execution in s, 

3) s0 ∈ S is the initial state, 

4) H is a finite set of clocks, and 

5) T ⊆ S×
 (H)

fn
t2


×

 (H)
fn

t2


×Act×H×S is the set of 

transitions. A transition(s,G,D, a, x,s’) represents switch 

from state s to state s0, by starting execution of action a 

and resetting clock x. G is the corresponding guard 

which must be satisfied to fire this transition. D is the 

corresponding deadline which requires, at the moment of 

its satisfaction, that action a must occur. 

The semantics of a DATA* A =(S,LS,s0,H,T) is defined by 

associating to it an infinite transitions system SA over ActT. 

A state of SA(or configuration) is a pair <s,v> such as s is a 

state of A and v is a valuation for H. A configuration <s0,v0> 

is initial if s0 is the initial state of A and x∈H, v0(x) = 0. 

 
 

Fig. 1. Example of DATA*. 

 

III. TIMED AUTOMATA WITH DURATION  

In [14], it was introduced a methodology of interpretation 

of DATA* in TA. This interpretation allows to verify 

DATA* by using UPPAAL [15].  

Let us consider the behavior expression E=a;b;stop, 

assuming that the actions a and b were not null durations and 

have the respective durations 10,12. Let us suppose that the 

action a can start only in the first three units of time and b in 

four units of time, the bebavior of E is given in Fig. 2. 

 

Fig. 2. DATA* represent execution of two successive actions. 

From the initial state s0, the action a can begin its execution 

while respecting the condition(c≤ 3), which means that a can 

always begin its execution if a particular clock did not reach 

value 3 units yet since the sensitization of the system. The 

system passes in the state s1 and cannot leave before the 

ending of the action a, in this state the action a is potentially 

in execution. The same reasoning applies for the action b. 

The transition from s0 to s1 can be represented in TA by the 

transition s0  
 xcabegin ,3),(  s1 (this transition expresses the 

beginning of the action a, the guard over the deadline of the 

offer, and x is the clock to be reset in zero by this transition to 

count the execution time of a). Once the system is in the state 

s1 he cannot leave it neither before the action a finished nor 

after the expiration of the deadline of affer of the action b. 

The action b can obviously conply only if the action a 

finished it execution. The approach consists in modelling an 

action which has two optional parameters: a deadline of offer 

and a duration of execution with an timed automaton 

containing : 

 A transition to express the beginning of the action  
 A state, where the system lives during the execution of 

the action. 

The guard of the next transition is used to capture, at the 

same time, the end of the action and the beginning of the next 

action (the clock x will be reset in 0 once again we say that it 

will be reused for action b). Finally we obtain the timed 

automaton representing the behavior E in the Fig. 3. 

 

Fig. 3. Timed automaton corresponding DATA*. 

By comparing both models illustrated by both Fig. 2 and 

Fig. 3, we can notice that both express the same behavior 

without for the timed automaton we lost the information at 

the end of the action b. It is evident that it is impossible to 

capture the end of the last action without adding a new 

transition. For  this, it was consider that all the processes use 

necessarily the particular action  to mark their ends. And so 

we obtain the behavior illustrated by the following Fig. 4. 

 

Fig. 4. Adding the action . 

Now we consider the parallel case, the system S is 

composed of two subsystems S1 and S2 running in parallel 

and synchronizing on an action d. The subsystem S1 

performs the action a followed by d, while S2 performs the 

action b followed by d. 

Suppose that the actions a, b and d have the respective 

durations 10, 12 and 4. The temporal restriction of the 

domain of sensitization of action d is 5 and 4 time units 

according the source of d from the S1 or S2. The DATA * 

corresponding to the system S is given by the Fig. 5. 
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Fig. 5. DATA* of system S. 

Applying the above reasoning, we obtain the automaton 

shown in Fig. 6 

 

Fig. 6. Timed automaton generated.  

The same reasoning applies for the interpretation of the 

urgency by timed automaton. The expression of the urgency 

in timed automata is done using the invariants. 

 

IV. ALGORITHM OF TRANSFORMATION OF THE DATA* IN 

TA  

This section we propose an algorithm for transformation 

DATA* to TA. The objective of this transformation is the 

exploitation of the TA for possible formal verification using 

the model checker UPPAAL. 

A. Algorithm DATA*2TA 

Algorithm DATA*2TA Translate DATA* to TA 
Input: DAT A* (S,Ls, s0,H, TD) 
Output: T A(Q,Act, q0,X,E, Inv) 
q0:= s0;   // intial location 
Q:={q0};   // set of location 
X:=    // set of clocks 
Act:=  //alphabet of actions 
For all transition t ∈ TD       

// t: transition of form si  
xDG ,,, 

 si+1 

//initialization parameters for each transion and sets of 
output TA 

qs:=t.si; qt:=t.si+1; 
       a:=t.α;   x:=t.x; 
       Q:=Q∪{qs,qt}; 
       Act:=Act∪{a} 
       X:=X∪{x}; 
       G:=t.G; D:=t.D; 
       if (D=∅) then 

 //the current action is not urgent 
          I:=∅; 
          renameClocks(G,x);   

// Rename the clocks in G with x 
Condition:=G; 

       else 
          I:=Invariant(G,D);       
          condition:=G/D∧Pi(D) 
       endif 
          e:=(qs,qt,a,x,condition); 
          Inv:=Inv∪{(I,qt)}; 
          E:=E∪e; 
    endfor 
    //Get the duration of execution of the last action in the 
model 
    C:=ExtractDuration(qt,Ls); 
    Act:=Act∪{}         // Last transition : action δ           
    x:=get(H\X) //clock  for δ 
    X:=X∪{x}; 
    E:=E∪(qt,q,,x,C); 
     
    TA:=(Act,Q,q₀,X,E,Inv)  //In output the TA 
    return TA; 

    end. 

B. Functioning of the Algorithm  

The algorithm of transformation of the DATA* in TA gets 

in input a DATA* represented by: a set of state S, a function 

Ls. An initial state s₀, a finite set of clocks, and TD set of 

transitions of the form s  
xDG ,,, 

s’.The temporal 

constraint G(respectively D) is described as follows : 

di∼x∼ds such as: di,ds∈ℝ and ∼∈{<,≤} and di∼x, x∼ds∈

G (respectively D). For a urgency constraint D ( D≠ ): 

G/D=di∼x∼ds such as =di∼x∼ds ⊧GD    

Pi(D)= di∼x ; Ps(D)= x∼ds 

In out the algorithm produces a TA constructed as the 

following way : 

 At first the initial state of the TA it is the same initial 
state of the DATA* 

 For every transition of the form s  
xDG ,,, 

s’ in 
DATA*: The algorithm begins by initializing the 
starting state s, the state arrived s’, the current action α 
and the clock x. 

 Get the two temporal constraints: G (guard),  D 
(deadline) 

 Updating the sets (Q, Act, H), and the set E of transitions 
of the TA<s,s’,a,x,G/D ∧ Pi(D)>∈E, the invariant 
I(s)=Ps(D) 

If the current action is not urgent thus the urgency 

constraint D is empty then the construction of the transition 

of the TA is as follows: 

 Both states of starts and to arrive already are to initialize 
 Absence of the invariant on the state to arrive 
 The guard G of the DATA* becomes a condition on 

transition 

The function renameClocks(G,x), allows to rename the 
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clock of type c in DATA* by the clock x in the constraint G. 

because the time for a clock in DATA* cannot elapse before 

the assigning of this clock to an action, it is for this reason 

there that the system is increased with the clock c(initialized 

dices the sensitization of system) to count the time before the 

onset of any action. On the other hand, the clocks of a TA 

begin to count the time dices the sensitization of the system. 

So, we can omit the clock c and replace it with x without 

affecting semantics of the model. If the action is urgent: The 

invariant is calculated from the urgency constraint D and the 

guard G. In the last step it is always necessary added the 

action δ to the TA to be able to capture the end of the last 

action of DATA*. The function ExtractDurtion(qt,Ls) it used 

to calculate the duration of the last action. Finally the 

algorithm returns the timed automaton TA. 

C. Termination 

The following theorem establishes the terminate of the 

algorithm DATA*2TA, in order for Algorithm to be correct 

the termination condition must ensure that when the 

algorithm terminates, it givens timed automaton. 

1) Theorem 1(termination): The algorithm DATA*2TA 

terminate 

Proof : To demonstrate this point, let us remind that the 

DATA* in input represents a finished semantic model,that is 

the number of state in the model is determined, by 

construction thus the ensemle of the transition TD is finished, 

what assures and guarantees the terminate of our algorithm. 

D. Complexity 

We show that the time complexity of our algorithm for 

transformation of DATA*2TA. 

1) Theorem 2(complexity): Given an DATA*, to 

transform the DATA* into timed automaton is a linear 

problem in number of transitions. 

Proof: We consider a DATA* (which does not contain 

either diagonal constraints or constraints of update). The size 

of TA built is the same that the size of the DATA* more the 

transition of the action δ and the last state. As the size of the 

DATA* is linear, the total size of construction is thus linear. 

 

V. CONCLUSION  

In this paper, we have developed an algorithm which 

produces an TA from DATA*. We also prove the guarantees 

termination of the algorithm and its complexity. The main 

interest of the model of the DATA* it is the use of semantics 

of maximality which allows the explicit expression of 

durations, and it supports temporal constraints including 

urgency of actions. Thus, correctness properties relative to 

system specified can be checked on maximality-based. 
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