

Abstract—Programmer’s errors in implementing edge

detection algorithms could induce faults in edge detection

programs. We study Sobel edge detection programs in C and

evaluate the effectiveness of Metamorphic Testing technique in

detecting faulty edge detection programs. We found that the

fault detection effectiveness varies for different metamorphic

relations used for testing. Contrary to common believe that

faults in image processing programs can be detected with any

non-trivial image as test input, our experiment results show that

there exists subtle fault that can only be detected when images

with certain properties are used as test inputs. Based on these

results, we propose general guides for using metamorphic

testing to detect faults in edge detection programs.

Index Terms—Component, edge detection, metamorphic

testing, software testing.

I. INTRODUCTION

An edge in digital image can be defined as the boundary

between two regions separated by two relatively distinct gray

levels [1]. Hence, edge detection is the process of localizing

the abrupt changes in the gray level of an image [2]. Edge

detection is an important pre-processing step in many digital

image processing and computer vision operations such as

feature extraction and detection, image enhancement,

compression, retrieval, watermarking, hiding, restoration and

registration [3].

Well-known algorithms such as Sobel and Canny have

been developed to perform edge detection [4], [5]. However,

programmer’s errors in implementing these algorithms could

induce faults in edge detection programs. Conventional

manual testing of edge detection programs suffers from two

major shortfalls. Firstly, it relies on tester’s subjective visual

judgment to compare the input and output images and decide

if the edge detection program is implemented correctly.

Secondly, as manual testing is time consuming and labor

intensive, only few standard test images such as “Lena” are

used for testing. As a result of such unreliable testing

approach, edge detection programs may contain undetected

faults and produce deteriorated or incorrect output images.

Manuscript received September 13, 2012; revised November 26, 2012.

This work was supported in part by Malaysian Governement’s MOSTI

ScienceFund 01-02-14-SF0005 and MOHE FRGS

(FRGS/2/2010/TK/SWIN/02/03).

K. Y. Sim is with the School of Engineering, Computing and Science,

Swinburne University of Technology (Sarawak Campus), Sarawak,

Malaysia (e-mail: ksim@swinburne.edu.my).

M. L. D. Wong is with the Department of Electrical and Electronic

Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, P.R.

China (e-mail: Dennis.Wong@xjtlu.edu.cn).

T. Y. Hii is with the Faculty of Engineering, Multimedia University,

Cyberjaya, Malaysia (e-mail: tun_tun88@hotmail.com).

In order to eliminate subjective human judgment in testing

of image processing program, Mayer [6] introduced a

statistical approach to judge the correctness of output images.

However, this approach can only be used if the statistical

distribution of the output images is known in advance. It

assumes that such statistical distribution, if exists, is

sufficient to judge the correctness of the output images.

Hence, its application is limited.

In a subsequent study, Mayer and Guderlei [7] have

proposed random [8] and binary [9] models to randomly

generate a large quantity of binary images to test a Euclidian

Distance Transformation [10] program. This is to overcome

the reliance on few standard test images such as “Lena”.

Metamorphic testing technique [11] is adopted to generate

additional test cases and detect faults in the test output images.

Through metamorphic testing and model generated images,

they have successfully automated the testing process for

Euclidean Distance Transformation programs.

Even though edge detection is an important and widely

used pre-processing operation in digital image processing,

testing of edge detection programs has not received much

attention. Any fault in its implementation will have

significant impacts on subsequent operations. In this paper,

we study the effectiveness of metamorphic testing technique

in detecting faults in Sobel edge detection programs. This

paper makes the following contributions.

1) We report the effectiveness of metamorphic testing in

detecting faulty edge detection programs.

2) We proposed the use of real images from published

image libraries as test inputs instead of model generated

images. We argued and presented the advantages of real

images over model generated images.

3) We showed that there exists subtle faults that can only be

detected when images with certain properties are used as

inputs.

4) We proposed general guides for the selection of images

to effectively detect faults in edge detection program.

The remainder of this paper is organized as follows:

Section II presents the concept of metamorphic testing

technique. Types of faulty Sobel edge detection programs are

presented in Section III. Section IV outlines the experiments

to evaluate the effectiveness of metamorphic testing and

present the results. Section V discusses the findings and

concludes the paper.

II. METAMORPHIC TESTING

Metamorphic testing was first coined by Chen et al. [11] as

a way to generate new test inputs and detect faults in program

under test even if the correct expected output is unknown.

Evaluating the Effectiveness of Metamorphic Testing on

Edge Detection Programs

K. Y. Sim, D. M. L. Wong, and T. Y. Hii

International Journal of Innovation, Management and Technology, Vol. 4, No. 1, February 2013

6DOI: 10.7763/IJIMT.2013.V4.346

mailto:ksim@swinburne.edu.my

Metamorphic testing is a property based testing technique. In

metamorphic testing, the necessary properties for correct

program implementation are first identified as metamorphic

relations. Base on existing test inputs (known as source test

inputs), new test inputs (known as follow-up test inputs) are

generated based the metamorphic relations. If the outputs of

source test inputs and follow-up test inputs violate the

metamorphic relation, then we can conclude that the program

under test is faulty.

To define a metamorphic relation (MR), let,

Is = {T1, T2, . . . , Tk} be a set of test inputs to a function f,

where k ≥ 1. Is is known as the source test inputs.

Os = {f(T1), f(T2), . . . , f(Tk)} be the set of outputs

correspond to Is.

S = {f(Ts1), f(Ts2), . . . , f(Tsm)} be a subset of Os where m ≥

0.

If = {Tk+1, Tk+2, . . . , Tn} be another set of test inputs to f,

where n ≥ k+1. If is know the as the follow up test inputs.

Of = {f(Tk+1), f(Tk+2), . . . , f(Tn)} be the corresponding set of

outputs for If.

RI(T1, T2, . . . , Tk, f(Ts1), f(Ts2), . . . , f(Tsm), Tk+1, Tk+2, . . . ,

Tn) be the test input relation.

RO(T1, T2, . . . , Tn , f(T1), f(T2), . . . , f(Tn)) be the test output

relation.

If there exists a relation RI among Is, S and If, and another

relation RO among Is, If, Os and Of such that RO must be

satisfied whenever RI is satisfied, then, an MR can be defined

as:

MR: If RI(T1, T2, . . . ,Tk, f(Ts1), f(Ts2), . . . , f(Tsm), Tk+1,

Tk+2, . . . , Tn), then RO(T1, T2, . . . , Tn, f(T1), f(T2), . . . , f(Tn)).

To illustrate the concept of metamorphic testing, consider

the following example. Suppose that a program has been

written to compute the sine function f(x) = sin(x). Let T1 =

36.5° be a test input to the program and f(T1) = 0.5948 is the

program output. We can use the trigonometry identity sin(x)

= -sin(x+180°) to derive the metamorphic relation. By using

T1 = 36.5° as the source test input, a follow up test input T2 =

36.5°+180° (that is 216.5°) can be generated based on the

trigonometric identity as metamorphic relation. If the

program output for f(T2) is not the negation of f(T1) (that is,

-0.5948) then we can conclude that the program under test is

faulty. From this example, it can be seen metamorphic testing

can detect the presence of fault even though the correct

expected output is not known beforehand (we do not know

beforehand if 0.5948 is the correct answer for sin(36.5°)).

This is particularly useful for many image processing

programs because the correct expected output is unknown

and not available beforehand for output verification.

We define the following metamorphic relations (MRs) to

detect possible faults in edge detection program. Let Im be at

the input image, E(Im) be the corresponding output image of

edge detection program,

• MR1: C(E(Im)) = E(C(Im))

where C(.) is a 90° counter-clockwise rotation. The output of

edge detection followed rotation should be the same as

rotation followed by edge detection for input image Im.

• MR2: Mx(E(Im)) = E(Mx(Im))

where Mx(.) is the reflection at the ordinate. The output of

edge detection followed by reflection at the ordinate should

be the same as reflection at the ordinate followed by edge

detection for input image Im.

• MR3: My(E(Im)) = E(My(Im))

where My(.) is the reflection at the abscissa. The output of

edge detection followed by reflection at the abscissa should

be the same as reflection at the abscissa followed by edge

detection for input image Im.

• MR4: T(E(Im) = E(T(Im))

where T(.) is a transposition. The output of edge detection

followed by transposition should be the same as transposition

followed by edge detection for input image Im.

These metamorphic relations are identified and adapted

from [7] based on the necessary property for correct

implementation of edge detection program. As all the

metamorphic relations are defined as identities, the fault

detection process can be automated by performing pixel to

pixel comparison to the output images. If the output images

are not identical, then the metamorphic relation is violated

and we can conclude that the edge detection program under

test is faulty. Hence, subjective human visual judgment can

be eliminated from the testing process.

III. FAULTY EDGE DETECTION PROGRAMS

A collection of faulty edge detection programs that contain

known faults are needed to evaluate the fault detection

effectiveness of the metamorphic testing techniques

presented in the last section. In this section, we present two

categories of faulty edge detection programs used in this

study.

A. Programs with Seeded Single Operator Fault

A single operator fault is seeded into the edge detection

program implementing Sobel algorithm in C programming

language. Two subtypes of operators are used here, namely,

the logical operators (AND, OR, NOT) and the relational

operators (>, >=, <, <=, ==, !=). For each occurrence of these

operators, the operator is replaced with another operator from

the same subtypes to create a faulty edge detection program.

For example, an AND operator in the program will be

replaced with an OR operator to create a faulty program. In

this study, one faulty program contains only one fault.

Programs with one fault are general harder to detect than

programs with multiple faults. Through error seeding, 30

versions faulty edge detection programs have been produced.

B. Program with Stride Implementation Fault

Wrong interpretation or incorrect implementation of

algorithm specifications can results in faulty program too. In

a related study [12], we have encountered a stride

implementation fault in the early stage of Sobel algorithm

implementation in C. A stride implementation fault occurs

when the image is processed up to the visible horizontal

width instead of the “stride” width. The stride width is the

actual horizontal dimension of the image data array. When an

image is saved, the horizontal dimension of the image will be

padded until the closest multiple of four for efficiency

purpose. To the best of our knowledge, it has not been

reported in any testing literature.

International Journal of Innovation, Management and Technology, Vol. 4, No. 1, February 2013

7

IV. EXPERIMENTS

Experiments are conducted to evaluate the effectiveness of

metamorphic testing in detecting the faulty edge detection

programs. The fault detection effectiveness, E, is defined in

(1).

Number of Detected Faulty Programs
100%

Total Number of Faulty Programs
E (1)

The fault detection effectiveness is evaluated for each

metamorphic relation presented in the previous section. A

faulty program is said to be detected by an MR if the

metamorphic relation is violated.

A. Test Inputs

To conduct metamorphic testing, a collection of images

need to be selected or generated as source test inputs. We

propose the use of real images (that is, camera captured

images) from published image libraries as test inputs as

opposed to model generated images proposed in [7].

Unlike model generated images, real images do not require

special tools to generate. Hence, it is a more practical and

accessible choice for program testers. Real images also can

have higher complexity and diversity in image content. They

are more unlikely to suffer from systematic bias caused by

parameter settings in image generating models. Furthermore,

a large collection of real images are available through

publicly accessible image libraries1.

For the purpose of experimentation, a total of 30 images of

different format (BMP, JPEG, PNG) have been sampled from

the image libraries in Table I. The 30 images selected are

used as the test inputs to test each of the faulty programs. If

any of the images trigger a violation of the metamorphic

relations, the faulty program is said to be detected.

B. Results

A total of 31 faulty programs (30 faulty programs with

single operator fault plus one program with stride

implementation fault) have been used in the experiment to

evaluate the fault detection effectiveness of metamorphic

testing. More particularly, the fault detection effectiveness of

each metamorphic relation is recorded. The experiment

results are presented in Table II. The overall fault detection

effectiveness (combining all metamorphic relations) is

presented in Table III.

From Table II, it could be observed that MR2 has the

highest fault detection effectiveness (77%), followed by

MR3. MR1 and MR4 have the lowest fault detection

effectiveness. However, the fault detection effectiveness

improves significantly when all the four metamorphic

relations are used in testing. As shown in Table III, 90% of

faulty programs violate at least one of the four metamorphic

relations.

1 A list of image library websites are available at

http://www.cs.cmu.edu/~cil/v-images.html at the time of writing

TABLE I: THE COLLECTION OF 30 IMAGES USED AS TEST INPUTS.

Image Library Number of

Images

Sampled

http://www.hlevkin.com/TestImages/classic.htm 5

http://www.imagecompression.info/test_images/ 10

http://r0k.us/graphics/kodak/ 15

TABLE II: FAULT DETECTION EFFECTIVENESS FOR EACH METAMORPHIC

RELATION.

Metamorphic Relations MR1 MR2 MR3 MR4

No. of Undetected Faulty

Programs (no violation to

this MR)

17 7 10 17

No. of Detected Faulty

Programs (violation of this

MR)

14 24 21 14

Total No. of Faulty

Program

31 31 31 31

E, Fault Detection

Effectiveness

45% 77% 68% 45%

TABLE III: OVERALL FAULT DETECTION EFFECTIVENESS

No. of Undetected Faulty Programs (No Violation to Any

MR)

3

No. of Detected Faulty Programs (Violation to at Least One

MR)

28

Total No. of Faulty Programs 31

E, Fault Detection Effectiveness 90%

1) Observations on the detection of faulty programs with

a single operator fault.

For the 30 faulty programs with a single operator fault, it

was found that the faults that can be detected by MR1 and

MR4 can also be detected by MR2 and MR3, but not

vice-versa. This suggests MR1 and MR4 are redundant in

detecting edge detection program with a single operator fault.

However, this observation may not hold for programs with

other types of faults.

Upon further investigation, it was found that either all or

none of the 30 images used as test inputs will cause violation

to an MR for a particular faulty program. This may suggest

that any of the 30 images is as good as the others in detecting

the faulty program. This observation reinforces that general

believe that fault in image processing program can be

detected with any non-trivial image as test input.

2) Observations on the detection of the faulty program

with stride implementation fault.

Contradictory to the observation made on programs with

single operator fault, the faulty program with stride

implementation fault can only be detected by MR1 and MR4

but not MR2 and MR3. Furthermore, as shown in Table IV,

the stride implementation fault can only be detected by five

out of the 30 images used as test inputs when tested with

MR1 and MR4. Upon further examination, it was found that

the five images that detects this faulty program have a

horizontal widths that are not multiple of four. This

International Journal of Innovation, Management and Technology, Vol. 4, No. 1, February 2013

8

observation defies the general believe that fault in image

processing application can be detected with any non-trivial

image as test input. It also implies that fault detection by

metamorphic testing also rely on the properties of the input

images.

TABLE IV: DETECTION OF FAULTY PROGRAM WITH STRIDE

IMPLEMENTATION ERROR

Metamorphic Relations MR1 MR2 MR3 MR4

No. of Test Images that

Violate the MR

5 0 0 5

No. of Test Images that do

not Violate the MR

25 30 30 25

Total No. of Test Images 30 30 30 30

Detection Rate for Test

Inputs

17% 0% 0% 17%

V. DISCUSSIONS

The results of the experiments show that metamorphic

testing is very effective in detecting faults in the

implementations of edge detection algorithm. It can detect up

to 90% of the faulty edge detection programs under study.

This is encouraging finding for testing of edge detection

programs as metamorphic testing can be conducted

automatically without relying subjective human visual

judgment.

Even though some metamorphic relations have higher

fault detection effectiveness than the others, the metamorphic

relations with lower fault detection effectiveness are not

redundant. This is because there are certain faulty programs

that can only be detected by these metamorphic relations.

Furthermore, the experiment results also show that the stride

implementation fault is a subtle fault that can only be

detected when images with certain property are used as test

inputs.

From the above observations, we propose the following

general guides in using metamorphic testing to detect faults

in edge detection programs.

1) All metamorphic relations identified should be used to

test edge detection programs because the metamorphic

relations may work in complementary to detect different

faults that may exist in the edge detection program. As

each MR has different fault detection effectiveness, we

recommend that testing is conducted with MR with

higher fault detection effectiveness first followed by the

lower ones. Such prioritization will improve the

probability of detecting more faults earlier in the testing

process.

2) Real images can be used as test inputs for metamorphic

testing instead of model generated images. A large

collection of real images are publicly accessible to

testers and are more unlikely to suffer from constraints

that exist on model generated images.

3) A variety of real images should be selected as test inputs.

Images with different dimensions, color depth and

formats should be used as test inputs. This is because

there may exist certain subtle faults that can only be

detected by images with certain properties.

VI. CONCLUSION

In conclusion, our study has shown that metamorphic

testing is effective in detecting faulty edge detection

programs. Our experiment results have shown that even

though the fault detection effectiveness of metamorphic

relations varies, they are complementary in detecting

different faulty edge detection programs. Contrary to

common believe that faults in image processing program can

be detected with any non-trivial image as test input, we have

found that there exists subtle fault that can only be detected

when images with certain properties are used as test inputs.

Finally we have outlined general guides for using

metamorphic testing to detect faults in edge detection

programs.

ACKNOWLEDGMENT

This work is supported via Malaysian Government

MOSTI ScienceFund 01-02-14-SF0005 and MOHE FRGS

(FRGS/2/2010/TK/SWIN/02/03).

REFERENCES

[1] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Reading:

MA Addison Wesley, 2 nd ed., 2002.

[2] G. Markus, A. E. E. Kwae, and R. K. Mansur, “Edge detection in

medical images using a genetic algorithm,” IEEE Trans. on Medical

Imaging, vol. 17, pp. 469-474, 1998.

[3] D. Ziou and S. Tabbone, “Edge detection techniques - an overview,”

Intl. J. Pattern Recognition and Image Analysis, vol. 8, pp. 537-559,

1998.

[4] S. E. Umbaugh, Computer Vision and Image Processing: A Practical

Approach Using CVIPtools, Upper Saddle, NJ, Prentice Hall, 1998.

[5] J. Canny, “A computational approach to edge detection,” IEEE Trans.

Pattern Analysis and Machine Intelligence, vol. 8, pp. 679-714, 1986.

[6] J. Mayer, “On testing image processing applications with statistical

methods,” in Proc. Software Engineering 2005 (SE 2005), vol. P-64 of

Lecture Notes in Informatics, Gesellschaft f ür Informatik e.V.,

K öllen Druck+Verlag GmbH, Bonn, 2005, pp. 69-78.

[7] J. Mayer and R. Guderlei, “On random testing of image processing

applications,” in Proc. Sixth International Conference on Quality

Software (QSIC'06), IEEE Computer Society, 2006, pp. 85-92.

[8] K. N. King and A. J. Offutt, “A fortran language system for

mutation-based software testing,” Software Practice and Experience,

vol. 21, pp. 685-718, 1991.

[9] D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic geometry and

applications, John Wiley and Sons, Chichester, 1995.

[10] P. Danielsson, “Euclidean distance mapping,” Computer Graphics and

Image Processing, vol. 14, pp. 227–248, 1980.

[11] T. Chen, S. Cheung, and S. Yiu, “Metamorphic testing: a new approach

for generating next test cases,” Technical report, Technical Report

HKUST-CS98-01, Department of Computer Science, Hong Kong

University of Science and Technology, Hong Kong, 1998.

[12] N. S. Chong, M. L. D. Wong, K. Y. Sim, B. M. Goi, and H. C. Ling,

“Hardware accelerated Sobel edge detection using common GPU

parallel computing platform,” in Proc. Conf. on Electrical and

Electronic Technology, 4th World Engineering Congress

(CEET-WEC2010), Kuching, Malaysia, August 2010.

K. Y. Sim received his BEng (Hons) from the National

University of Malaysia in 1999 and Masters of

Computer Science from University of Malaya,

Malaysia in 2001. He is currently a Senior Lecturer

and the Associate Head for Program Development and

Accreditation at the School of Engineering,

Computing and Science, Swinburne University of

Technology, Sarawak Campus, Malaysia. His research

interests include software testing and for embedded

system testing. Mr. Sim is a member of IEEE and IEEE Computer Society.

International Journal of Innovation, Management and Technology, Vol. 4, No. 1, February 2013

9

M. L. Dennis Wong received his BEng (Hons) in

Electronics and Communication Engineering and his

PhD from the Department of Electrical Engineering and

Electronics, University of Liverpool, Merseyside, U.K.

in 1999 and 2004 respectively. He is currently an

Associate Professor at the Department of Electrical and

Electronic Engineering, Xi’an Jiaotong Liverpool

University (XJTLU), Suzhou, Jiangsu Province, China.

Prior to his current appointment, he was a Lecturer, a

Senior Lecturer, later the Associate Head of School (Engineering) at the

School of Engineering, Computing and Science, Swinburne University of

Technology (Sarawak Campus), Malaysia from 2004 to 2011. His research

interests include statistical signal processing and pattern classification,

machine condition monitoring, and VLSI Design for digital signal

processing. Dr. Wong is a Senior Member of the IEEE and a Member of the

IET.

T. Y. Hii received his Bachelor of Engineering (Hons) from Multimedia

University, Malaysia in 2011.

International Journal of Innovation, Management and Technology, Vol. 4, No. 1, February 2013

10

