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Abstract—This paper proposes three novel noise robustness 

techniques for speech recognition based on discrete wavelet 

transform (DWT), which are wavelet filter cepstral coefficients 

(WFCCs), sub-band power normalization (SBPN), and lowpass 

filtering plus zero interpolation (LFZI). According to our 

experiments, the proposed WFCC is found to provide a more 

robust c0 (the zeroth ceptral coefficient) for speech recognition, 

and with the proper integration of WFCCs and the 

conventional MFCCs, the resulting compound features can 

enhance the recognition accuracy. Second, the SBPN procedure 

is found to reduce the power mismatch within each modulation 

spectral sub-band, and thus to improve the recognition 

accuracy significantly. Finally, the third technique, LFZI, can 

reduce the storage space for speech features, while it is still 

helpful in speech recognition under noisy conditions. 

 

 

I. INTRODUCTION 

The conventional mel-frequency cepstral coefficients 

(MFCC) [1] have been one of the most widely used speech 

features for speech recognition over many years. In deriving 

the MFCC, the short-time Fourier transform (STFT) is 

applied. However, due to its time-frequency properties, 

STFT is actually not very suitable for analyzing a 

non-stationary signal like speech [2], which implies the 

resulting MFCC is not always optimal for representing the 

speech signal and possibly provides less recognition 

accuracy. One way to partially solve the problem is to apply 

the multi-resolution property in time and frequency domain, 

and the multi-resolution goal is achieved by replacing STFT 

with wavelet transform [3]. Unlike the Fourier transform, the 

finite-length basis functions [4] help wavelet transform 

analyze the non-stationary signal with better transformable 

ability. Although wavelet transform has a better performance 

in analyzing the nonperiodic signal, STFT performs better for 

presenting the periodic signal [5]. Thus in this paper we 

create the compound feature to integrate them both and find it 

is helpful for speech recognition.  

The environmental mismatch caused by additive noise 

and/or channel distortions often degrades the performance of 

a speech recognition system. To overcome this problem, 

researchers have proposed many speech enhancement or 
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robustness techniques to enhance the speech or alleviate the 

effect of noise. We find that the wavelet analysis can be also 

applied to constructing the noise-robust speech features. In 

the past research of our lab, the wavelet transform was used 

in the temporal speech feature stream and good recognition 

performance can be achieved [6]. Therefore, in this paper we 

follow this direction to provide more noise-robust features 

with wavelet transform, and come up with two novel 

robustness methods, sub-band power normalization (SBPN) 

and lowpass filtering plus zero interpolation (LFZI).  

The remainder of this paper is organized as follows: 

Section II briefly introduces the discrete wavelet transform 

(DWT). Then we present three DWT-based noise robustness 

methods in Section III. Section V contains the experimental 

results together with the discussions. Finally, a brief 

concluding remark is given in Section VI. 

 

II. DISCRETE WAVELET TRANSFORM 

Here, we make a brief introduction of discrete wavelet 

transform. Consider a signal f[n] that is decomposed by a 

discrete wavelet transform with the scaling ( [ ]j k n  ) and 

wavelet ( [ ]j k n  ) basis functions [7]:  

 

       , , , ,[ ] [ ] [ ]j k j k j k j k

j k j k

f n a n d n     (1) 

 

Based on eq. (1), f[n] is decomposed into aj,k and dj,k, 

which are considered as the approximation (low-pass) part 

and the detail (high-pass) part, respectively.  

In practice, the implementation of the discrete wavelet 

transform is sometimes accomplished with sequential 

filtering and down-sampling, as presented in Fig. 1. In this 

figure, h[-n] and g[-n] are the low-pass and high-pass filters 

respectively, followed by a down-sampling process. 

According to Fig. 1, the signal aj+l,k is first decomposed into 

the approximation and detail parts with filtering and 

down-sampling procedures, and then the approximation 

sequence is decomposed again with the same process.  

  In this paper, we viewed the discrete wavelet transform as 

a filtering process and develop several noise-robustness 

methods. 

 

III. SEVERAL NOVEL PROPOSED TECHNIQUES 

Based on DWT, we present three novel methods to 

improve the original MFCC in its recognition accuracy under 

noisy environments.  
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Fig. 1. Three-level discrete wavelet transform 

A. Wavelet Filter Cepstral Coefficients (WFCCs) 

In Section II, the DWT procedure recursively decomposes 

the approximation sequence. However, the wavelet packet 

transform (WPT) [8], a generalized version of DWT, is 

applied in the proposed WFCC construction here. Unlike 

DWT which only decomposes the approximation part, WPT 

also decomposes the detail part, and thus it can perform the 

frequency division with more flexibility. The flowchart of the 

proposed WFCC construction process is shown in Fig. 2. We 

use wavelet packet transform for frequency division to create 

a new filter bank. This new wavelet filter bank is used to 

replace the mel-filter bank in MFCC creating process, and we 

name the corresponding new features as wavelet-based filter 

cepstral coefficients (WFCC).  
 

   
Fig. 2. The flowchart of WFCC feature extraction 

 

The tree structure of the wavelet packet decomposition in 

creating WFCC for a given frame signal is shown in Fig. 3. 

The lower frequency range [0, 2000 Hz] is divided into 

equal-width sub-bands, while the bandwidths of the 

sub-bands get wider monotonically as the frequency 

increases in the higher frequency range [2000 Hz, 4000 Hz] 

(Here, the sampling rate is set to 8000 Hz).  

 
 
Fig. 3. The tree structure of wavelet packet transform in WFCC construction 

 

There are 21 sub-bands finally created. This arrangement 

somewhat simulates the perceptual characteristics of human 

beings.  

After processing the frame signal x[n] with the above 

sub-band decomposition, as shown in Fig. 3, the output 

sequences x[n], l=1,2,…,21, in the l-th sub-band are further 

applied to eq. (2) to produce 21 values, which present the 

sub-band signal power features for that frame.  
 

 
    

Fig. 4. The sub-band arrangement in the filter-bank used for WFCC 
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 (2) 

From eq. (2), we see that an overlapping filter structure as 

shown in Fig. 4 is used, which is similar to the filter-bank 

arrangement in deriving MFCC, and it produces the signal 

power values of the overlapped filter outputs. Except for the 

wavelet package transform for finally creating 21 power 

values, the remaining procedures of WFCC construction are 

the same as those of MFCC, as shown in Fig. 2.  

B. Sub-Band Power Normalization 

In this new method, we attempt to normalize the “power" 

of the sub-band features in the temporal domain of MFCC 

feature sequence to alleviate the noise effect. The discrete 

wavelet transform (DWT) is applied in the temporal domain 

to obtain the (modulation spectral) sub-band features. 

According to [9], different modulation frequency 

components possess different importance for speech 

recognition. General speaking, the most significant 

information for speech recognition is located between 1 Hz 

and 16 Hz in modulation frequency, and the most important 

part is around 4 Hz. Based on this observation, to split the 

modulation band into several ones with an unequal 

bandwidth will help process the important sub-band features 

individually.  

The proposed sub-band power normalization (SBPN) is to 

normalize the power of each sub-band (in modulation 

frequency) temporal feature sequence for the utterances in 

the training and testing sets. The detailed procedure of SBPN 

process is depicted in Fig. 5.    

We consider the mel frequency cepstral coefficients 

(MFCC) for speech recognition. An MFCC feature stream 

for an utterance is represented as:  
 

         [ ] 0 1 0 1m{c n n N m M }          (3) 

 

where n and m are the frame index and feature index, 

respectively, and N and M are respectively the number of 

frames and the number of features in a frame.  

In SBPN, each temporal feature sequence 

{ [ ] 0 1mc n n N    } is first divided into L sub-band 

sequences by using an L-level discrete wavelet transform 

(DWT). Therefore the l-th sub-band sequence, represented 
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by { [ ]m

lc n }, is roughly within the following modulation 

frequency range:  
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 (4) 

 

where 
sF  (Hz) is the frame sampling rate. Therefore, through 

DWT, we split the entire frequency band [0, 
2

sF
 Hz] into L 

sub-bands with unequal bandwidth.  

Next, each sub-band sequence is updated for power 

normalization according to the following equation:  
 

                [ ] [ ]

m

target_lmm
l l m

single_l

P
n c nc

P
    (5) 

 

where the [ ]m
l nc  is the new speech feature, and m

target lP


 and 

m

single lP


 are the target power (obtained from the clean 

sub-band features in the training set) and the power of the 

currently processed [ ]m

lc n , respectively.  

Finally, all the updated sub-band sequences are used 

together to reconstruct the new full-band (temporal) 

sequence with an L-level inverse discrete wavelet transform 

(IDWT).  

C. Lowpass Filtering and Zero Interpolation (LFZI) 

According to the original DWT decomposition process, 

the low-pass and high-pass filters are first applied to the input 

data, and a down-sampling procedure is applied to the two 

filter outputs. As stated in [9], the main speech component (1 

Hz 16 Hz) is just within the front half modulation spectrum. 

Therefore, if the original speech frame rate is 100 Hz, then 

after processing the feature frame sequence with a one-level 

DWT, the low-pass filter output (before down-sampling) is 

roughly within [0, 25 Hz], preserves the speech information, 

while the high-pass filter output seems less helpful in speech 

recognition. In addition, the down-sampling process doubles 

the bandwidth of filtered sequence. 
 

 
 

Fig. 5. The SBPN process with four sub-bands 

 

Accordingly, the approximation feature sequence via 

DWT (the lowpass-filtered and down-sampled sequence) 

may perform better than the original sequence since the 

irrelative components (high frequency parts) are removed. 

However, due to down-sampling, the approximation 

sequence is a half of the original feature sequence in length. 

The feature length reduction is found to be defective since 

there will be insufficient data for training accurate acoustic 

models.  
 

 
 

Fig. 6. The detailed procedure of the LFZI technique 

 

In order to solve or alleviate the above problem of data 

insufficiency, we apply a zero interpolation (adding one zero 

between each sample) in the approximation sequence to 

make the resulting new sequence roughly equal the original 

sequence in length. We name the above process as “lowpass 

filtering and zero interpolation”, abbreviated as “LFZI”. The 

procedure of the LFZI method is depicted in Fig. 6.  
 

IV. EXPERIMENTAL SETUP 

We use the AURORA-2 database [10], which is widely 

used for evaluating robustness algorithms under noisy 

conditions. For the recognition environment, three different 

subsets are defined: Test Sets A, B and C. Speech signals in 

Test Sets A and B are affected by additive noise (in Set A, the 

noise types are subway, babble, car and exhibition; and in Set 

B, they are restaurant, street, airport and train station), and 

speech signals in Test Set C is affected by additive noise and 

channel effects (subway or street noise together with an 

MIRS channel mismatch). Each noise instance is added to the 

clean speech at six SNR levels (ranging from 20 dB to -5 dB). 

Each utterance in the clean training set and three 

noise-corrupted testing sets is first converted into a sequence 

of 13-dimensional MFCCs (c0 c12) and the same 

dimensional WFCCs. The frame length and frame shift are 

set to 32 ms and 10 ms, respectively.  

The Hidden Markov Model Tool kit (HTK) [11] is used for 

the training and recognition process. The resulting acoustic 

models include 11 digit models (zero, one, two, three, four, 

five, six, seven, eight, nine and oh) and a silence model. Each 

digit model contains 16 states and 20 Gaussian mixtures per 

state. 
 

V. EXPERIMENT RESULTS AND ANALYSES 

In this subsection, we will separately present the 

recognition performance achieved by our three novel 

methods and give the corresponding discussions. 

Since WFCC alone do not perform very well (as will be 

shown as Feature Set iiiv in Table 2), we partition the original 

13 cepstral features into two sets: { c0 }  and { c1, c2, ..., 

c12 } , and then we have seven compound feature sets as 

listed in Table 1, and they are depicted in Fig. 7 for a clearer 
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description, where 1 2 3g g g   and 4g  are the weights for c0 

and the set { c1, c2, ..., c12 }  of WFCC and MFCC, 

respectively. Besides, Sets VIII and IX in Table 2 presents 

using WFCC (c0, c1 c12) alone and using MFCC (c0, 

c1 c12) alone, respectively. 
 

 
Fig. 7. The combination of WFCC and MFCC 

A. Recognition Results for Combinations of WFCC and 

MFCC 

TABLE I: SEVEN FORMS OF COMPOUND FEATURES 

 

Table II represents the recognition rates of these 

compound features, conventional MFCC and the WFCC. 

From this table, we have the following observations: 

1) Based on Table 2, WFCC (Set VIII) performs worse than 

MFCC (Set IX). However, most of the compound 

features could improve the recognition accuracy, which 

implies WFCC provides some information for 

recognition that MFCC somewhat lacks. 

2) The recognition accuracy always gets better when we 

use the WFCC-based c0 alone or combine it with 

MFCC-based c0 (feature sets I, II, III and VII). However, 

for MFCC-based c0  the situation is converse. This 

phenomenon implies for the component c0, WFCC is 

better than MFCC. 

3) On the other hand, if the features c1 c12 are 

completely or partially from MFCC rather than WFCC 

alone, the recognition accuracy is significantly improved. 

This shows that MFCC deriving process is more capable 

of providing better nonzero quefrency ( 1 12c c , 

corresponding to the variation of the log-spectrum) 

components. 

 
TABLE II:  SUMMARY OF THE AVERAGED RECOGNITION ACCURACY (%) 

FOR ALL TYPES OF COMPOUND FEATURES 

Set Set A Set B Set C Average 

I 73.08 69.70 79.47 74.08 

II 72.66 69.34 79.04 73.68 

III 73.06 69.65 79.67 74.13 

IV 67.42 64.02 72.75 68.06 

V 66.63 63.06 71.97 67.22 

VI 72.87 70.22 79.08 74.06 

VII 74.35 71.04 80.13 75.17 

VIII 68.15 64.44 72.35 68.31 

IX 71.13 67.55 78.53 72.40 

B. Recognition Results for Sub-band Power 

Normalization 

Table III represents the recognition rates from of the SBPN 

process. From this table, we have several observations as 

follows: 

1) Since in CMS, only one statistic (mean) is normalized, 

which is similar to our proposed SBPN that also 

processes only one statistic (power), here we 

additionally show the recognition accuracy from CMS. 

All the power normalization methods, including 

full-band power normalization (FBPN) and SBPN with 

different L, outperform the baseline and CMS. Therefore, 

we show that normalizing the power for feature streams 

is indeed helpful for improving the recognition accuracy.  

2) The results of SBPN with L=2, 3, and 4 are very close to 

those of FBPN. However, when the number of 

sub-bands, L, in SBPN is greater than 4, a significant 

accuracy improvement can be achieved, and the best 

relative error reduction is 55.22% when L=6. Therefore, 

the results indicate that performing modulation 

frequency division in the proposed SBPN can effectively 

improve the recognition accuracy. 

3) Finally, we find that increasing L from 6 to 7 results in 

lower accuracy rates. This is possibly due to the 

over-normalization effect. Besides, due to the 

down-sampling of DWT, higher level decomposition 

will give relatively short-length signals, which make the 

corresponding power estimate less accurate     and thus 

lower the performance of SBPN. 
 
TABLE III: THE AVERAGED RECOGNITION ACCURACY (%) FOR SBPN WITH 

DIFFERENT NUMBER OF SUB-BANDS. 

 Set A Set B Set C Average 

FBPN 80.69 84.00 79.31 81.41 

SBPN(2) 80.99 84.21 80.01 81.74 

SBPN(3) 80.22 83.09 79.71 81.01 

SBPN(4) 80.69 83.47 80.39 81.52 

SBPN(5) 84.85 86.58 85.02 85.48 

SBPN(6) 87.19 88.17 87.58 87.65 

SBPN(7) 85.95 86.95 86.49 86.44 

CMS 79.01 82.30 79.34 80.22 

MFCC 71.13 67.55 78.53 72.40 

 

TABLE IV: THE AVERAGE RECOGNITION ACCURACY (%) FOR THE VARIOUS 

METHODS AND THE BASELINE. 

 Set A Set B Set C  Average 

Approximate part of 

DWT-processed MFCC 
45.78 46.71 46.10 46.20 

DWT lowpass-filtered MFCC 73.02 70.03 79.90 74.32 

LFZI 78.34 80.21 77.15 78.57 

MFCC baseline 71.13 67.55 78.53 72.40 

C. Recognition Results for Lowpass Filtering and Zero 

Interpolation 

Table IV gives the performance of our third new 

DWT-based method: low-pass filtering and zero 

interpolation (LFZI). Here we also represent the results of 

two other methods for comparison, one of which uses the 

approximation part of the DWT-processed MFCCs (without 

zero interpolation) as the new speech features, and the other 

uses the low-pass filtered MFCCs in the DWT procedure 

(without down-sampling and zero interpolation). According 

to Table IV, we see that:  

Set c0 c1~c12 g1 g2 g3 g4 

I 

II 

III 

IV 

V 

VI 

VII 

WFCC 

WFCC+MFCC 

WFCC+MFCC            

WFCC+MFCC 

MFCC 

MFCC          

WFCC          

MFCC              

MFCC 

WFCC+MFCC       

WFCC 

WFCC    

WFCC+MFCC 

WFCC+MFCC 

0 

1 

1 

1 

1 

1 

0 

1 

1 

1 

1 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0  

0  

1 

1 

1 

1 

1 
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1) Our proposed LFZI provides 6.17% accuracy 

improvement over the baseline. In addition, LFZI 

performs the best among the three methods listed in this 

table.  

2) The method that directly uses the approximate part of 

DWT-processed MFCCs has the worst performance, 

which is possibly due to the insufficient training data, 

causing the inaccurate acoustic models.  

3) Although the low-pass filter-processed sequence has the 

same length as the original MFCC sequence and gets 

better accuracy rates than the MFCC baseline, it is worse 

than our proposed LFZI method. The results reveal that 

in addition to low-pass filtering, the down-sampling and 

zero-insertion processes in LFZI indeed help improve 

the noise robustness of MFCC features.  
 

VI. CONCLUSION 

In this paper, we propose three noise-robustness 

techniques. First, the new WFCC construction process gives 

a better c0 feature while MFCCs have superior c1 c12 

features, which makes the compound features behave better 

than WFCC alone and MFCC alone. Second, the sub-band 

power normalization (SBPN) attempts to normalize the 

power of each sub-band in the temporal domain. Finally, 

LFZI reserves the more important modulation spectral 

portions in the feature sequence and reduces the storage 

space for speech features simultaneously. Despite the 

simplicity in implementation, the proposed SBPN and LFZI 

significantly improve the recognition accuracy under noisy 

situations.  
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