
  

   
Abstract—Improving the quality of products is one of 

significant research issues in many industrial situations. In 
order to address these issues, many researchers and 
practitioners have considered that robust design (RD) is one of 
the most effective methodologies to find the optimal factor 
settings on many chemical formulation problems. To these 
problems, a robust optimization method for a number of 
multiple responses is often required. The primary objective of 
this paper is to investigate existing multi-objective RD methods 
and to conduct their associated comparative study. In addition, 
a fitted function for each response is obtained by using response 
surface methodology (RSM). In order to perform a comparative 
study in terms of optimization aspects, a number of existing 
multi-objective optimization models and criteria are utilized. 
Final, a chemical chase study is performed for verification 
purposes.   
 

Index Terms—Robust design, comparative study, multi- 
objective optimization, Response Surface Methodology (RSM). 
 

I. INTRODUCTION 
Robust design (RD) is one of the most effective 

methodologies which can improve the quality of a product. A 
number of researches have been developed RD and its 
applications to many industrial problems for more than 
twenty years. RD was introduced by Taguchi in 1979. Based 
on the Taguchi’s RD philology, Vining and Myers [1] 
introduced a dual-response approach based on response 
surface methodology (RSM) as an alternative for modeling 
process relationships by separately estimating the response 
functions of the process mean and variance in order to 
achieve the primary goal of RD by minimizing the process 
variance while adjusting the process mean at the target. Del 
Castillo and Montgomery [2] and Copeland and Nelson [3] 
showed that the optimization technique proposed by Vining 
and Myers [1] might not always guarantee the optimal RD 
solutions, and proposed standard non-linear programming 
techniques, such as the generalized reduced gradient and the 
Nelder–Mead simplex methods, which can provide better RD 
solutions. Modified dual-response approaches using fuzzy 
theory were further developed by Kim and Lin [4]. However, 
Lin and Tu [5] pointed out that the RD solutions obtained 
from the dual-response model may not necessarily be optimal 
since this model forces the process mean to be located at the 
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target value, and proposed the mean squares error (MSE) 
model, relaxing the zero-bias assumption. Because the MSE 
approach provide a small process bias with process variance 
is less than mostly equal to the variance obtained from the 
Vining and Myers’ model. Thus, the MSE model may 
provide better (or equal, at least) RD solutions unless the 
zero-bias assumption must be met. Further modifications to 
the MSE model have been discussed by Kim and Cho [6], 
Shin and Cho [7]. However, most of those identified RD 
models were considered as a single response problem, even 
though a number of real-world problems are often related to 
multi-response optimization problems. In order to address 
these multi-response problems using the RD principle, a 
number of multi-objective RD models have been proposed by 
Kovach and Cho [8] and Shin and Cho [9]. To this end, a 
robust optimization method for a number of multiple 
responses is often required. The primary objective of this 
paper is to investigate existing multi-objective RD methods 
(i.e., weighted sum (WS), weighted-Tchebycheff (WT), 
lexicographic method (LM) and desirability function (DF) 
approach) and to conduct their associated comparative study. 
In addition, a fitted function for each response is obtained by 
using response surface methodology (RSM). In order to 
perform a comparative study in terms of optimization aspects, 
a number of existing multi-objective optimization models 
and criteria are utilized. Final, a chemical chase study is 
performed for verification purposes. Figure 1 illustrates an 
overview of this paper. 

 
Fig. 1. An overview of the proposed methodology. 

II. MODEL DEVELOPMENT 

A. Experiment Format 
Assuming that a number of responses (y1,y2,…yn) is 
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influenced by a number of control factors (x1,x2,…,xN). And 
the number of replication was observed at each response yi 

which is q replications. Based on the observation value, the 
mean and variance for each response can be found. Table 1 
represents a standard experiment format for this study. 
 

TABLE I: THE GENERAL EXPERIMENTAL FORMAT FOR MULTIPLE 
CHARACTERISTICS 

runs X 
y1 
Replications yଵഥ  sଵ

ଶ 

1 

Control factor 
settings 

y111 
y112….y11q yതଵଵ sଵଵ

ଶ  

… …   

k y1k1 
y1k2….y1kq yതଵ୩ sଵ୩

ଶ  

runs X 
y2 
Replications yଶഥ  sଶ

ଶ 

1 

Control factor 
settings 

y211 
y212….y21q yതଶଵ sଶଵ

ଶ  

… …   

k 
y2k1 
y2k2….y2kq 

yതଶ୩ sଶ୩
ଶ  

… 

runs X 
yn 
Replications y୬തതത s୬

ଶ 

1 

Control factor 
settings 

yn11 
yn12….yn1q 

yത୬ଵ s୬ଵ
ଶ  

… …   

k 
ynk1 
ynk2….ynkq 

yത୬୩ s୬୩
ଶ  

 

B. Response Surface Methodology (RSM) 
Based on the proposed experimental framework, an 

estimation method must then be developed for obtaining 
functional relationships between input factors and their 
associated output responses. It is known that response surface 
methodology (RSM) is one of popular estimation methods. 
RSM is a collection of mathematical and statistical 
techniques that is useful for modeling and analyzing these 
problems when the response of interest is influenced by 
several factors. Its objective is to optimize (either minimize 
or maximize) the optimal function of output responses. RSM 
is typically used to optimize the optimal function by 
estimating input-output functional forms when the exact 
functional relationships are not known or very complicated 
[14]. As a comprehensive presentation of RSM, Myers and 
Montgomery [14] provided insightful comments on the 
current status and future direction of RSM. Using the output 
responses (i.e., mean responses yi and variance responses si

2), 
the second-ordered estimated response functions of the 
process mean and variance are given as 

 
µොሺxሻ ൌ αො  ܉Tܠ   (1)                                                  ܠۯTܠ

 
where 

and  
σଶሺxሻ ൌ β  Tbܠ   (2)                                                ܠT۰ܠ

where  
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xଶ
ڭ

xN
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ڭ
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αଵଶෞ 2⁄

ڭ
αଶଶෞ

ڭ
ڮ
ڰ
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ڮ
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ێ
ێ
βଵۍ
βଶ
ڭ
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ۑ
ۑ
ې
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۰ ൌ

ۏ
ێ
ێ
ێ
ۍ βଵଵ βଵଶ 2⁄ ڮ βଵN 2⁄
βଵଶ 2⁄

ڭ
βଶଶ

ڭ
ڮ
ڰ

βଶN 2⁄
ڮ

βଵN 2⁄ βଶN 2⁄ ڮ βNN ے
ۑ
ۑ
ۑ
ې
 

and where vector a and matrix A denote the estimated 
regression coefficients for the process mean; and vector b and 
matrix B represent the estimated regression coefficients for 
the process variance, respectively. 

C. Optimization Models 
By using RSM as discussed in the previous section, the 

fitted functions of the process mean and variance 
(i.e., µనෝ ሺܠሻ and σన

ଶሺܠሻ) are obtained at each response yi. After 
obtaining the estimated functions, the next step is to find the 
optimal factor settings (i.e., the optimal chemical 
formulation). By using the MSE concept, the objective 
function for each response yi can be expressed as MSE୧ሺܠሻ ൌ
 µనෝ ሺܠሻ  σన

ଶሺܠሻ . Based on this formulation, the general 
optimization model can be identified as follows: 
Minimize {MSEଵሺܠሻ, MSEଶሺܠሻ, … , MSE୧ሺܠሻ, … , MSE୬ሺܠሻሽ 
Subject to: ܠ א ષ                                                                 (3) 
Where MSE୧ሺܠሻ= µనෝ ሺܠሻ  σన

ଶሺܠሻ 
In order to address this multi-objective optimization, we 

use a number of methods (i.e.,WS, WT, LM and DF) for 
handing the multi-responses as shown in Table II. 

 

III. PILOT STUDY 
In this paper, a chemical case study is conducted for 

multiple responses reported in the chemical engineering 
literature (Jauregi et al., 1997) is employed to demonstrate 
the use of the existing multi-response optimization 
approaches. When surfactant solutions are mixed at high 
speeds, micro bubbles (10–100 µm in diameter) are formed. 
It is postulated that these bubbles, called colloidal gas 
aphrons (CGAs), are composed of a gaseous inner core 
surrounded by a thin soapy film. The properties of the CGAs 
are measured by two responses, such as stability (y1) and 
temperature (y2). The purpose of this experiment is to 
determine the effects of concentration of surfactant (x1), 
concentration of salt (x2), and time of stirring (x3) on the 
CGA properties. The experimental data is displayed in Table 
3. By using Equations (1) and (2), the fitted response function 
of each response can be obtained as  
yଵµሺxሻ ൌ 4.9778  0.8170xଵ െ 0.4480xଶ   0.0390xଷ  
                 െ0.1113xଵxଶ    0.0688xଵxଷ െ0.0613 xଶxଷ 
                 െ0.1372xଵ

ଶ  0.2878xଶ
ଶ െ 0.0672xଷ

ଶ 
yଵሺxሻ ൌ െ0.0180 െ 0.0208xଵ  0.0632xଶ  0.0476xଷ 
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                 െ0.0146xଵxଶെ0.0561xଵxଷ  0.0522xଶxଷ 
                 0.0495xଵ

ଶ  0.0379xଶ
ଶ  0.0489xଷ

ଶ 
yଶµሺxሻ ൌ 28.9202 െ 1.4800xଵ െ 0.0900xଶ  2.3300xଷ 
                 െ0.0875xଵxଶ െ 0.7125xଵxଷ  0.4000xଶxଷ 
                 െ0.6078xଵ

ଶ െ 1.0078xଶ
ଶ െ 0.6078xଷ

ଶ 
yଶሺxሻ ൌ 34.8412 െ 29.0930xଵ  8.0802xଶ   78.6949xଷ 
                 െ8.9552xଵxଶ െ 25.2268xଵxଷ  0.2055xଶxଷ 
                 11.6216xଵ

ଶ  41.3620xଶ
ଶ  11.0680xଷ

ଶ 
 

TABLE II: THE OPTIMIZATION MODELS FOR MULTI-RESPONSES 

Weighted- 

sum  

Minimize ∑ ω୧MSE୧
୬
୧ୀଵ ሺܠሻ 

 Subject to 
                ∑ ω୧

୬
୧ୀଵ ൌ 1, i ൌ 1, nതതതതത, 

ܠ                 א  Ω, 
 where 
                MSE୧ሺܠሻ ൌ  µనෝ ሺܠሻ  σన

ଶሺܠሻ 
 

(4)

Desirability 

 function  

Minimize ∏ d୧ሺܠሻ୬
୧ୀଵ  

Subject to 
ܠ                 א  Ω 
Where 
d୧ሺܠሻ ൌ

ە
۔

ۓ 0                if  MSE୧ሺܠሻ ൏ ܧܵܯ
୫୧୬

MSEሺܠሻିெௌா
ౣ

ெௌா
ౣ౮ି ெௌா

ౣ   if  ܧܵܯ
୫୧୬  MSE୧ሺܠሻ  ܧܵܯ

1                if MSE୧ሺܠሻ  ܧܵܯ
୫ୟ୶

, 
ܧܵܯ              

୫୧୬ ൌ ܠ|ሻܠሼMSE୧ሺ݁ݖ݅݉݅݊݅݉ א
 Ωሽ 
ܧܵܯ              

୫ୟ୶ ൌ ܠ|ሻܠሼMSE୧ሺ݁ݖ݅݉݅ݔܽ݉ א
 Ωሽ 
              MSE୧ሺܠሻ ൌ  µనෝ ሺܠሻ  σన

ଶሺܠሻ 

(5)

Weighted- 

Tchebycheff 

method 

 Minimize ሼε, eTሺ۳܁ۻ െ  ሻሽכ܃
 Subject to   
               ω୧ሾMSE୧ሺܠሻ െ U୧

ሿכ െ ε  0, i ൌ 1, nതതതതത, 
               ∑ ω୧

୬
୧ୀଵ ൌ 1, 

ܠ                א  Ω, 
 Where 
               MSE୧ሺܠሻ ൌ  µనෝ ሺܠሻ  σన

ଶሺܠሻ, 
               U୧

כ ൌ minሼMSE୧ሺܠሻ|ܠ א  Ωሽ, 

۳܁ۻ                ൌ 
MSEଵሺܠሻ

ڭ
MSE୬ሺܠሻ

൩ , כ܃ ൌ 
Uଵ
ڭ

U୬

൩ 

(6)

Lexicographic 

method 

First step 

(7)

Minimize MSEଵሺܠሻ 
 Subject to        
ܠ                 א  Ω 
Where 
                MSEଵሺܠሻ ൌ  µଵෞሺܠሻ  σଵ

ଶሺܠሻ, 
Generalized priority optimization model for 
second step 
Minimize MSE୧ሺܠሻ 
Subject to 
                MSE୨ሺܠሻ ൌ  MSE୨

,כ j ൌ 1, ı െ 1തതതതതതതതത, 
ܠ                 א  Ω, 
 Where 
                MSE୨

כ ൌ MSE୨൫ܠ୨
 ,൯כ

                MSE୧ሺܠሻ ൌ  µనෝ ሺܠሻ  σన
ଶሺܠሻ 

 
After obtaining the estimated functions of the process 

mean and variance for responses y1 and y2, the optimization 
models which are given in Table 2 is applied in order to find 
the optimal factor settings. By setting the target values for 
both responses y1 and y2 as 7 and 30, respectively, the optimal 
solutions by using four models, such as WS, WT, LG and DF, 
are obtained as follows: x୵ୱ

כ ሺ0.7269; 0.0842; െ0.3592ሻ ,  
x୵୲

כ ሺെ1.0000; െ0.0289; െ0.7890ሻ, x୪୫
כ ሺ0.1688; 0.1306; 0.2609ሻ  

, and xୢ
כ ሺ1.0000; െ1.0000; െ0.0020ሻ, respectively, as shown 

in Table IV. 

TABLE III: THE CAG STUDY 
runs x1 x2 x3 rep y1 y2 yଵഥ  yଶഥ  sଵ

ଶ sଶ
ଶ 

1 
−1 −1 −1 1 4.5 29 

4.5 26 0 4.24 
−1 −1 −1 2 4.5 23 

2 
1 −1 −1 1 6.04 23 

6.22 24.2 0.25 1.7 
1 −1 −1 2 6.39 25.4 

3 
−1 1 −1 1 3.81 22 

3.95 24.5 0.2 3.54 
−1 1 −1 2 4.09 27 

4 
1 1 −1 1 5.67 25.5 

5.43 23.25 0.34 3.18 
1 1 −1 2 5.19 21 

5 
−1 −1 1 1 4.67 20 

4.45 30.5 0.32 14.85
−1 −1 1 2 4.22 41 

6 
1 −1 1 1 6.73 35.5 

6.65 26.75 0.11 12.37
1 −1 1 2 6.57 18 

7 
−1 1 1 1 3.4 43 

3.86 31.5 0.65 16.26
−1 1 1 2 4.32 20 

8 
1 1 1 1 5.72 19 

5.41 26.5 0.45 10.61
1 1 1 2 5.09 34 

9 
−1 0 0 1 4.09 36 

4.24 30 0.21 8.49 
−1 0 0 2 4.38 24 

10 
1 0 0 1 5.52 30 

5.46 27 0.09 4.24 
1 0 0 2 5.39 24 

11 
0 −1 0 1 5.92 32 

5.93 27.7 0.01 6.08 
0 −1 0 2 5.93 23.4 

12 
0 1 0 1 4.74 36 

4.62 28.5 0.17 10.61
0 1 0 2 4.5 21 

13 
0 0 −1 1 5.01 27 

4.86 25.5 0.22 2.12 
0 0 −1 2 4.7 24 

14 
0 0 1 1 4.94 38 

4.98 31.5 0.05 9.19 
0 0 1 2 5.01 25 

15 

0 0 0 1 4.85 34 

4.94 28.17 0.06 6.37 

0 0 0 2 4.94 34 
0 0 0 3 4.98 33 
0 0 0 4 4.89 24 
0 0 0 5 4.94 19 
0 0 0 6 5.01 25 

 
In addition, Figure 2 insulates the criterion space of y1 and y2 
and the optimal factor settings. Based on these results, we 
obtained four different solutions and each set of the optimal 
solutions has different criteria (i.e., weight and priority).  
 

IV. CONCLUSION 
The primary goal of this paper is to make a comparison 

between methodologies which were used in the RD 
optimization step. We utilized a combination of the estimated 
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function of the process mean and variance at each response 
into one objective function. A chemical case study was 
conducted in order to demonstrate how the proposed 
methodology can provide solutions. Based on the case study 
results, there are two main criteria in the decision making 
process of the optimization model which are weight and 
priority. In effect, these criteria depend on the purpose of 
each problem associated with importance of quality 
characteristics. This comparative study can provide a guide 
line to select a suitable optimization model for a given 
situation. In this paper, a comparative study was performed 
based on only RD optimization methodologies while 
considering the estimation method by using RSM. For further 
study, a number of different estimation methodologies can be 
considered and compared.  

 
Fig. 2. The criterion space of y1 and y2. 

 
TABLE IV: THE OPTIMAL SETTINGS FOR MULTI-RESPONSES BASED ON THE 

FOUR MODELS: WEIGHTED-SUM, WEIGHTED-TCHEBYCHEFF, 
LEXICOGRAPHICAL METHOD AND DESIRABILITY FUNCTION 

Models 
Optimal value(x*) 

yଵഥ  sଵ
ଶ T1 yଶഥ  sଶ

ଶ T2
x1 x2 x3 

WS 0.73 0.08 -0.36 5.42 0.00 

7 

26.76 0.00 

30
WT -1.00 -0.03 -0.79 4.01 0.00 27.02 0.00 

LM 0.17 0.13 0.26 5.06 0.00 29.17 52.00

DF 1.00 -1.00 0.00 6.50 0.00 26.00 59.50
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