
  

 

Abstract—Productivity monitoring is a crucial process that 

considerably contributes in the success of earthmoving projects. 

Over decades, researchers have been focused on identification 

and assessment of the factors that lead to loss-in-productivity in 

earthmoving operations. However, considerably less work was 

focused on the effects of productivity variation on cost and 

schedule of earthmoving projects. This paper introduces an 

automated data collection that acquires data from various 

technological sources. The collected data facilitates the 

assessment of productivity ratio that assists in continuous 

monitoring of productivity variation in earthmoving projects. 

Also, this paper introduces a new fuzzy set-based monitoring 

system that investigates the effects of productivity variation on 

cost, schedule and depletion of resources in earthmoving 

projects based on set of qualitative and quantitative factors. The 

proposed monitoring system generates an early warning that 

allows for proactive decision making to avoid delays, overruns, 

and unnecessary depletion of resources. A case example is used 

to demonstrate the applicability of proposed method and its 

features in monitoring and evaluating the effects of productivity 

variation on cost, schedule and utilization of resources in 

earthmoving projects. Finally, results are discussed and 

conclusions are drawn highlighting the features of proposed 

method and recommendations for future work. 

 
Index Terms—Decision making, earthmoving project, fuzzy 

set theory, monitoring system, productivity variation, resources 

depletion.  

 

I. INTRODUCTION 

Performance of earthmoving operations contributes 

considerably to the success or failure of construction projects. 

Cost of earthmoving operations represent 20% of total cost of 

construction projects [1] and [2] which explains the 

importance of monitoring the productivity variation in 

earthmoving operations. Productivity variation may lead to 

cost overruns, schedule delays and unnecessary depletion of 

resources in earth moving operations. Low productivity may 

generate schedule delay and inefficient use of resources 

however; high productivity may lead to cost overrun and over 

depleted resources. Therefore, monitoring the productivity in 

earthmoving operations is necessary to avoid undesirable 

consequences that may be harmful for one or more project 

objectives. The performance level in earthmoving operations 

is tightly related to productivity rate which is dependent to 

various operational, environmental, technical and managerial 

factors. Therefore, assessment of productivity rate is essential 
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for evaluating the performance in earthmoving operations 

however, productivity assessment solely doesn’t provide any 

indication about possible occurrence of undesirable 

consequences. 

 

II. BACKGROUND 

Monitoring of earthmoving operations receives 

considerable attention from researchers [1]. However, the 

majority of existing work focused on the assessment of 

productivity in earthmoving operations [1], [3] and [4] using 

traditional methods [1] that require human intervention (i.e. 

manual or semi-automated) or fully automated methods using 

various advanced technologies including; RFID [3], GPS [4], 

video recording [5], [6], GIS [7], or combination of two or 

more technologies [1] and [7]. Other researchers focused on 

identifying the factors that lead to low productivity in respect 

to equipment utilization [8]-[10], Labor productivity [10] and 

[11], and enhancement of certain process [12] to elevate the 

productivity and to improve the performance in earthmoving 

operations [13] and [14]. Regardless of limitations, these 

methods provide enhancements and corrections for the 

assessment process of productivity in earthmoving operations. 

Also, these methods provide various recommendations that 

can be useful for elevating the productivity in earthmoving 

operations. However, these methods did not consider the 

effects of productivity variation on cost, schedule, and 

efficient use of resources that may lead to failure of 

earthmoving operations and consequently, failure of 

construction projects. 

This paper aims to introduce an automated fuzzy set-based 

monitoring system that assists in highlighting the effects of 

productivity variation on earthmoving operations and in 

generating an early warning to indicate possible occurrence 

of undesirable consequences. The proposed monitoring 

system provides a decision support tool that assists project 

managers in taking proactive, instead of reactive, decisions to 

avoid cost overruns, schedule delays and inefficient 

utilization of resources in earthmoving operations. 

The proposed monitoring system includes five modules; 

automated data collection, productivity assessment, fuzzy 

set-based monitoring system, productivity analysis, and early 

warning decision support as shown in Fig. 1. 

A. Automated Data Collection Module 

This module automates data collection and integrates 

various data sources (e.g. cameras, smartphones, sensors, 

etc.…) to acquire the necessary information for assessing 

accurately the actual productivity in earthmoving operations. 

Fig. 2 shows the data collection procedure from various 

sources using a set of advanced technologies. 
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Fig. 1. Framework of proposed monitoring method. 

 

 
Fig. 2. Overview of proposed automated data collection module. 

 

 
Fig. 3. Productivity assessment module. 

 

B. Productivity Assessment Module 

Productivity assessment module utilizes the collected data 

to evaluate, at each period t, the actual productivity (AP) 

using an assessment script that combines two or more of 

existing methods [13] and [14] for productivity assessment as 

shown in Fig. 3. Then, productivity ratio (PR) is calculated as 

the ratio between actual and planned productivities for the 

same period t using (1).  

( )
( )=

( ) 

AP t
PR t

PP t
               (1) 

where PR(t), AP(t) and PP(t), represent respectively 

productivity ratio, actual productivity, and planned 

productivity at time t. 

C. Fuzzy Set-Based Monitoring System 

The proposed monitoring system introduces a 

low-optimum-high (LOH) fuzzy set-based monitoring 

system (see Fig. 4) that identifies the productivity 

performance based on three states; low, optimum, and high. 

The upper and lower bounds of each state is organization 

(project) dependent [16] therefore, each organization has to 

evaluate lower and upper bound of each fuzzy attribute (e.g. 

Low) based on their experience in earthmoving operations. 

The productivity ratio (PR) values represents the x-axis of 

LOH fuzzy system whereas, the membership function (µ) 

represents the y-axis. The ideal value of PR equals to 1 

whereas actual productivity ratio at period t, PR(t), is 

acquired from the productivity assessment module and 

illustrated on proposed monitoring system as a vertical 

indicator as shown in Fig. 4.  

It should be noted that no action is required as long as the 

indicator of actual productivity ratio is located within the 

optimum area (e.g. between 0.9 and 1.1) as shown in Fig. 4. 

However, if the indicator, at certain period t, moves beyond 

the optimum area (i.e. Low or High) that means further 

analysis is needed. In other words, only when there is 

possibility for occurrence of undesirable events the 

productivity analysis module is initiated to identify and 

evaluate the consequences of the event being considered 

before issuing an early warning that supports the decision 

making process in earthmoving operation. 

L~O and O~H fuzzy areas, shown in Fig. 4, represent the 

situations where the productivity performance cannot be 

assessed without further analysis. In this case, the 

productivity analysis module is initiated to differentiate 

between low and optimum (optimum and high) states. 

D. Productivity Analysis Module 

The productivity analysis module generates the fuzzy 

membership function that represents the L~O (O~H) fuzzy 

area based on low(high) and optimum fuzzy number using (2). 

The weights of fuzzy number Ã  and B̃   are calculated 

respectively as the membership of Ã  and B̃  at actual 

productivity ratio using (3). It also utilizes the agreement 

index [16] to differentiate between the low (high) and 

optimum states. 

The agreement index represents the ratio of areas of 

intersection between the fuzzy membership functions that 

represent the fuzzy area (e.g. L~O) and each of the states (e.g. 

L and O) using (4) and (5). Agreement index ratio (AIR) is 

introduced to differentiate between two different state at a 

given productivity ratio as presented in (6). Assuming that Ã 

represents the low (high) state and B̃ represents the optimum 

state, if AIR ( Ã , B̃ ) is higher or equal to 1 than the 

productivity is considered optimum and no further action is 

required otherwise, it is considered low (high) and that 

imposes the initiation of early warning decision support 

module.  

~  =
BA

A B w A w B           (2) 

))((~~ tPRw
AA

               (3) 

where Ã and B̃, represent respectively two fuzzy numbers A 

and B. 𝑤Ã and 𝑤B̃, represent respectively two fuzzy numbers 

A and B.  
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Fig. 4. LOH fuzzy set-based monitoring system. 

 

Ã ~ B̃  represents the fuzzy number that represents the 

fuzzy area between A and B, noted also as A~B̃. 
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where AI(A~B̃, B̃) and AI(A~B̃, �̃�) represent the agreement 

indices between the fuzzy area between Ã and B̃  and the 

fuzzy. 

AIR(Ã, �̃�) represent the agreement index ratio between 

the fuzzy number Ã and B̃. 

 

 
Fig. 5. Early warning decision support module. 

 

E. Early Warning Decision Support Module 

Early warning decision support module is initiated based 

on the identified state (e.g. low) of productivity in 

earthmoving operations as presented in section D. If, the 

identified state was low that means there is possibility for 

occurrence of schedule delay or inefficient use of resources 

then, the responsible project parties are notified. However, in 

case where the identified productivity state is high that means 

there is possibility for occurrence of cost overrun or over 

depletion of resources (e.g. number of trucks is more than 

needed) in this case the responsible parties are also notified. 

The proposed early warning system (shown in Fig. 5) 

identifies for each consequence the project parties that need 

to be notified using an embedded notification system. These 

notifications highlight the need for intervention and allow 

decision makers to take quick and proactive decisions that 

may increase the productivity performance and may assist in 

avoiding schedule delays, cost overruns, and inefficient use 

of resources. 

 

III. CASE EXAMPLE 

This hypothetical example is used to demonstrate the 

applicability of proposed method and to illustrate its features 

in monitoring the productivity performance in earthmoving 

operations. Assuming that the input data are received from 

various technological sources (see Fig. 6) and used to 

evaluate the actual productivity (AP) at each period of time t. 

Assuming that, the actual productivity at period t =50 was 

evaluated as 106 m
3
/day and for the same period of time, the 

productivity was planned as 125 m
3
/day. In this case the 

productivity ratio for period t=50 is calculate using (1) as 

0.85 and that means the LOH fuzzy monitoring system shows 

the indicator of actual productivity ratio in the L~Õ fuzzy 

area as shown in Fig. 6. The weights of each fuzzy state  L̃ 

and  Õ are calculated using (3) as 0.25 and 0.75 respectively. 

A trapezoidal fuzzy number for L~Õ fuzzy area is calculated 

using (2) and (3) and the membership function that represents 

the L~Õ fuzzy number is generated as shown in Fig. 6. 

 

L~Õ=0.25×L̃ + 0.75×Õ 

 

L~Õ=0.25×[0,0,0.7,0.9] + 0.75×[0.7,0.9,1.1,1.3] 

 

L~Õ=[0.525,0.675,1.0,1.2] 

 

Using the membership functions, the agreement indices of 
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L~Õ with L̃ and that of L~Õ with  Õ are calculated using (4) 

as follows: 

 

AI(L~Õ, L̃)=
Area(L~O ̃∩ L̃)

Area(L~Õ)
=

0.2

0.5
=0.4 

 

AI(L~Õ, Õ)=
Area(L~O ̃∩ Õ)

Area(L~Õ)
=

0.3

0.5
=0.6 

 

AIR(L~Õ, Õ)=
Area(L~O ̃∩ Õ)

Area(L~O ̃∩ L̃)
=

0.3

0.2
=1.5 

 

 
Fig. 6. Agreement index of low optimum with optimum. 

 

In this case, the system identified the productivity as 

optimum which means no further action is required. However, 

if the productivity ratio continues to decrease and it reaches a 

level of 90 m
3
/day at period t=60 then, the calculation 

procedure is modified as follows: 

 

PR(60)=0.8 

 

μ
L̃
(PR(60))=μ

Õ
(PR(60))=0.5 

 

L~Õ=0.5×L̃ + 0.5×Õ=[0.35,0.45,0.9,1.1] 

 

AI(L~Õ, L̃)=
Area(L~O ̃∩ L̃)

Area(L~Õ)
=

0.4

0.6
=0.67 

 

AI(L~Õ, Õ)=
Area(L~O ̃∩ Õ)

Area(L~Õ)
=

0.2

0.6
=0.332 

 

AIR(L~Õ, Õ)=
Area(L~O ̃∩ Õ)

Area(L~O ̃∩ L̃)
=

0.2

0.4
=0.5 <1 

 

In this case, the productivity is identified as low which 

means there is possibility for occurrence of schedule delay or 

inefficient use of resources. Consequently, the early warning 

decision support should be initiated and notifications should 

be sent to decision makers in order to take corrective actions 

whether to avoid the occurrence of schedule delay or to 

increase the use of resources if deemed necessary.  

 

IV. SUMMARY AND CONCLUSIONS 

This paper presents a newly developed fuzzy set based 

monitoring system that automates the tracking of 

productivity and identifies the effects of productivity 

variation on schedule, cost and resources allocation in 

earthmoving operations. The developed system provides a 

multiple technologies-based framework for automating the 

data collection about productivity in earthmoving operations. 

It also introduces a new LOH fuzzy system that identifies the 

performance level of productivity based on three states low, 

optimum and high using fuzzy set theory. Also, the 

developed monitoring system provides a decision support 

tool with an embedded notification procedure that provides 

an early warning to highlight the consequences of low or high 

productivity. The early warning system assists decision 

makers to take proactive instead of reactive decisions to 

avoid or reduce the consequences of undesired events. The 

case example demonstrates the use and applicability of 

developed method highlighting its features in collecting data 

using various sources, evaluating of actual vs. planned 

productivity, monitoring of productivity variation using 

fuzzy set theory, analysis of results using fuzzy calculation, 

and providing decision support using an early warning 

system.  

It should be noted that the developed monitoring system 

assists in monitoring productivity of earthmoving operations 

and highlights the correct time for intervention. However, 

this system depends considerably on the accuracy of data 

collected from various technologies. In this respect, the 

development of an assessment system that integrates the data 

collected from various technologies in a manner that elevates 

the accuracy of productivity assessment is recommended.  
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