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Abstract—What kinds of relationships exist among the 

growth rates of consumption of beef, pork, and chicken in 

Japan? This paper studies the dynamics of fresh meat 

consumption using monthly data from January 1990 to March 

2014 from Japan’s Agriculture & Livestock Industries 

Corporation. First, a time-varying coefficient vector 

autoregressive model is constructed for a time series of fresh 

meat consumption, and its parameters are estimated using a 

Bayesian method. The time-varying power contribution and 

time-varying covariance function for the time series are then 

obtained based on the estimates for the model. The results show 

that the power contribution to the consumption of chicken from 

that of beef is very significant. The consumption of beef gives a 

stronger power contribution to that of pork at lower 

frequencies. Furthermore, the consumption of pork gives a 

stronger power contribution to that of chicken at lower and 

higher frequencies, and especially the latter in recent years. 

 
Index Terms—Bayesian modeling, fresh meat consumption, 

time-varying coefficient, VAR model. 

 

I. INTRODUCTION 

In this paper, we focus on the consumption of various 

types of fresh meat in Japan, namely beef, pork, and chicken. 

When the consumption of one type of meat fluctuates as the 

result of a shock, the consumption of other kinds of meat will 

be affected. For instance, when beef consumption drops 

significantly following a bovine spongiform encephalopathy 

outbreak, the consumption of pork and chicken increases. 

The aim of this paper is to analyze the relationships among 

changes in the consumption of beef, pork, and chicken in 

Japan using a time-varying coefficient vector autoregressive 

(TVCVAR) model.  

Major studies on the interactions between various types of 

meat consumption or price include those of Chang and 

Griffith [1], Andersen et al. [2], and Hajko and Jaroslav [3]. 

Chang and Griffith [1] analyzed the relationships between 

Australian beef prices at farm, wholesale, and retail levels 

using VAR models and found that all three prices were 

cointegrated. Furthermore, the wholesale price was found to 

be weakly exogenous. The latter result might be an indication 

of market inefficiency that is due, in part, to price leveling, 
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which is often practiced in the beef marketing system. 

Andersen et al. [2] analyzed Danish dynamic meat price and 

quantity transmissions using a VAR model of 

market-clearing quantities and prices from the Danish pork, 

chicken, and beef markets. Their main result implied that 

pork, chicken, and beef are close substitutes. Hajko and 

Jaroslav [3] focused on the relevant markets for various types 

of meat in the Czech Republic. Based on a cointegration 

analysis and testing of Granger causality using a VAR model, 

they obtained the following results: for chicken, the market in 

the Czech Republic can be considered independent, both 

geographically and by product. For pork, the relevant market 

includes Germany and Slovakia in addition to the Czech 

Republic. The relevant beef market includes the Czech 

Republic and Germany. 

A vector autoregressive (VAR) modeling approach is 

useful for analyzing the relationships within vector time 

series [4]. However, a VAR model can only be applied to 

stationary time series. Moreover, in a conventional VAR 

modeling approach, coefficients in the models are treated as 

constant parameters despite the use of long-term time series 

data. Although this reflects the assumption of invariability in 

the model structure, the assumption that there are no 

structural changes whatsoever when the model covers a 

period of several decades is clearly unrealistic. Thus, much of 

the previous research is not based on an appropriate dynamic 

framework. 

Jiang and Kitagawa proposed an approach for vector time 

series with nonstationary covariance by developing a 

time-varying coefficient vector autoregressive (TVCVAR) 

modeling method [5]. The TVCVAR model can be used to 

explain the dynamic relationship between all variates in a 

vector time series (see [6]). For example, Kyo and Noda [7] 

apply the Bayesian TVCVAR modeling approach proposed 

by Jiang and Kitagawa [5]. Specifically, Kyo and Noda [7] 

consider the VAR model with time-varying coefficients that 

treats both oil price fluctuations and industrial production 

growth as endogenous variables. Regarding the influence that 

an oil price change has on an economy, the first and second 

oil shocks tend to be the focus. That is, the recognition of past 

oil shock events is dominant. However, oil prices have been 

fluctuating in recent years, and in particular have had an 

influence on industrial production since the 2000s that cannot 

be disregarded. In this paper, the TVCVAR modeling 

approach is applied to the analysis of the dynamic 

relationship among consumption growth rates for beef, pork, 

and chicken in Japan. 

The rest of this paper is organized as follows. In Section II, 

we present our Bayesian TVCVAR modeling and the 
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procedure for parameter estimation. In Section III, we show 

the results and discuss some implications. Section IV 

concludes the paper. 

 

II. MODELING AND ESTIMATION SCHEME 

A. Model Construction 

Consider a set of monthly data as the seasonally adjusted 

time series          and      which expresses the 

consumption of beef, pork, and chicken, respectively, with 

  denoting the month. The 3-month-ahead growth rates can 

then be calculated as 
 

    
     (   ) 
 (   ) 

    (       )  

 

We regard    (           )
  as a 3-variate time series, 

and introduce the following TVCVAR model: 
 

   ∑   ( )
 
                               (1) 

 

where   is the model order, and   ( )  (         ) are 

time-varying coefficient matrices for each lag at time  . In 

Eq. (1),    is a 3-variate Gaussian white noise sequence with 

zero mean and covariance matrix  ( ). It is assumed that    

and      are independent of each other for    . 

To estimate the parameters efficiently, we construct a 

TVCVAR model with a simultaneous response as 
 

   ∑   ( )
 
                              (2) 

 

where    (           )
  is a 3-variate Gaussian white 

noise sequence with zero mean and covariance matrix   
    (  

    
    

 ) . The coefficient matrices   ( ) (  
       ) are defined as follows:  
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In particular,   ( ) is called a simultaneous response 

matrix. For each element of   , the model in Eq. (2) can be 

rewritten as follows:  
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It is assumed that           and     are independent of 

each other. Thus, we can estimate the parameters for each 

model separately in Eqs. (3), (4), and (5), so the efficiency of 

parameter estimation can be improved. This is the first 

advantage of using a form of the TVCVAR model with a 

simultaneous response. 

To estimate the time-varying coefficients, we apply a 

Bayesian method using smoothness priors of order 1 for the 

nonzero elements in the matrices    ( )  (         ) . 

That is, we introduce a set of smoothness priors of order 1 in 

the form  
 

    ( )      (   )      ( )                    (6) 

 
where     ( ) is a Gaussian white noise sequence with zero 

mean and unknown variance   
 . 

It can be confirmed that the models in Eqs. (1) and (2) are 

linked by the relationships 

 

  ( )  (    ( ))
  
  ( )   (         ),     (7) 

 

 ( )  (    ( ))
  
 (    ( ))

  
              (8) 

 

Therefore, if the parameters in the model in Eq. (2) are 

given, those in the model in Eq. (1) can be obtained using Eqs. 

(7) and (8). 

B. Estimation of Time-Varying Coefficients 

Now, we set 
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and 
 

             
        

     (       ) 
 

with   being an identity matrix of size       . Then, one 

of the models in Eqs. (3)–(5) together with Eq. (6) can be 
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expressed by the following state space model: 
 

  
( )
       

( )
     

( )
                        (9) 

 

         
( )
                            (10) 

 
with respect to        , respectively. In the state space 

model comprising Eqs. (9) and (10), the time-varying 

coefficients are included in the state vector   
( )

, so their 

estimates can be obtained from the estimate of   
( )

. Moreover, 

the parameters,   
  and   

 , which are called hyperparameters, 

can be estimated using the maximum likelihood method. 

Let   
( )

 denote the initial value of the state   
( )

 and    

denote a set of observations of the time series    up to the 

time point    Assume that   
( )
  (    

( )
     
( )
). It is well 

known that the distribution  (  
( )
   )  for the state   

( )
 

conditional on    is Gaussian, so it is only necessary to 

obtain the mean   
( )

 and the covariance matrix     
( )

 of 

  
( )
 with respect to  (  

( )
    ). 

When the values of      
 , and   

  the initial 

distribution  (    
( )
      

( )
), and a set of observations up to the 

period   are given, the estimates for the state   
( )

 can be 

obtained using the well-known Kalman filter (for    
       ) and fixed-interval smoothing (for      
         ) recursively as follows (see, for example, [8] 

and [9]): 

[Kalman filter (step 1): One-step-ahead prediction] 
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[Kalman filter (step 2): Filter] 
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[Fixed-interval smoothing] 
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Then, the posterior distribution of   
( )

 can be given 

by (    
( )
     
( )
)  and subsequently the estimates for the 

time-varying coefficients can be obtained because the state 

space model described by Eqs. (9) and (10) incorporates the 

coefficients in the state vector    
( )

. Furthermore, the 

time-varying cross-spectrum, time-varying power 

contribution, and time-varying covariance function can be 

obtained based on the estimates of   ( ) and  ( ) using the 

method proposed in [4]. In particular, the time-varying power 

contribution and time-varying covariance function help to 

explain the dynamic relationship between every variate in the 

vector time series. 

C. Estimation of Constant Parameters 

Let    *          + be the set of observations for the 

time series    up to the time point   , with    being an 

empty set. When the value of model order   and the whole of 

the time series data    are given, the likelihood function of 

the hyperparameters   
  and   

   (       ) is defined 

approximately by 
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where   
( )(     (   )   

    
 ) is the conditional density of 

    given the past observations  (   )  together with the 

values of   
  and  

 , and so on. As given by [9], using the 

Kalman filter means that conditional densities are normal 

densities given by 
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where  ̂     
( )

 is the mean for the one-step-ahead prediction 

of      and       
( )

 is the variance of the predictive error, 

which are respectively given by 
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By taking the logarithm of  (     
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log-likelihood is given by 
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where   (  
    

 ),   (  
    

 ) , and   (  
    

 ) are the partial 

log-likelihood functions, which are given by 
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Thus, the estimates of the hyperparameters can be obtained 

using the maximum likelihood method, i.e., the estimates for 

the hyperparameters   
    

  are obtained by maximizing 

  (  
    

 ), and so on for the other hyperparameters. 

Theoretically, the value of model order  should be 

determined via the minimum AIC method (see [10]). 

However, we use a vague distribution to set  (    
( )
     
( )
) by 

    
( )

 and     
( )
    for         with   being a sufficiently 

large positive number. In this case, the values of   can also be 

determined by the maximum likelihood method because the 

number of hyperparameters in the model is identical for 

different values of  . 

 

III. RESULTS AND IMPLICATIONS 

We applied the proposed approach to the monthly statistics 

from January 1990 to March 2014, which we obtained from 

Japan’s Agriculture & Livestock Industries Corporation. 

Fig. 1 shows the line graphs of the time series data for      
   , and    , which express the 3-month-ahead growth rates 

for the consumption of beef, pork, and chicken, respectively. 

 

 
Fig. 1. Data for the 3-month-ahead time series. 

 

First, we show the results for determining the values of   . 

Table I shows the maximum log-likelihood values for each 

value of model order  . 

 

TABLE I: LOG-LIKELIHOOD VALUES FOR THE TVCVAR MODEL 

                    

1591.16 1585.09 1627.62 1612.52 1613.40 

                     

1629.52 1626.60 1621.98 1611.74 1599.56 

 

It can be seen from Table I that the log-likelihood value is 

maximized when    , so we determined a value of the 

model order using     based on the maximum likelihood 

method. 

Fig. 2 and Fig. 3 show the time-varying power contribution 

and the time-varying cross-covariance, respectively. 

In Fig. 2, the panels on the diagonal show the estimates for 

the time-varying power contribution for the same type of 

meat. For instance, the panel in the second row and the 

second column shows the time-varying power contribution to 

the pork consumption growth rate of the pork consumption 

growth rate. The other panels show the time-varying power 

contribution for different types of meats. For instance, the 

panel in the first row and the second column shows the 

time-varying power contribution of the pork consumption 

growth rate to the beef consumption growth rate. 

A number of conclusions can be drawn from this result. 

Changes in the consumption of beef have not been strongly 

affected by changes in the consumption of pork and chicken. 

Similarly, changes in the consumption of pork have not been 

overly affected by changes in the consumption of beef and 

chicken. However, the consumption of beef has a long-term 

impact on that of chicken, and is also affected by its own past 

consumption. This latter feature can also be seen in relation to 

the consumption of pork and chicken. This can be interpreted 

as a kind of habit formation in the consumption of livestock 

products. 

 

 
Fig. 2. Estimates of time-varying power contribution. 

 

In Fig. 3, the diagonal panels show the estimates for 

time-varying cross-covariance for the same type of meat. The 

panel in the third row and the third column shows the 

time-varying power cross-covariance between the past 

chicken consumption growth rate and the present chicken 

consumption growth rate. The other panels show the 

time-varying cross-covariance for different types of meats. 
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For instance, the panel in the first row and the third column 

shows the time-varying cross-covariance between the beef 

consumption growth rate and the chicken consumption 

growth rate. 

 

 
Fig. 3. Estimates of time-varying cross-covariance. 

 

Fig. 3 shows that there is a clear relationship between the 

present and past consumption growth rates of beef, with a 

short lag time. The growth rates of past chicken consumption 

are related, in part, to the growth rates of present chicken 

consumption, with a short lag time. However, we cannot find 

a clear relationship between the present and past 

consumption growth rates of pork. 

 

IV. CONCLUSIONS 

Some interesting findings can be distilled from these 

results. No significant changes over time can be observed in 

the correlations between the changes in the consumption of 

beef and pork, the changes in the consumption of chicken and 

pork, and the changes in the present and past consumption of 

beef. However, there are changes over time in the 

correlations between the consumption of beef and chicken, 

the present and past consumption of chicken, and the present 

and past consumption of beef. Moreover, there is a 

correlation between the consumption of beef and chicken, but 

no clear correlation can be observed between the 

consumption of beef and pork. 
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