

Abstract—The paper proposes a software architecture for

rapid development of high-level architecture (HLA)-integrated

simulations for critical infrastructure elements under natural

disasters. It considers the main issues involved in a simulation of

complex interdependent systems, which are a part of the critical

infrastructure (CI). It investigated an implementation of the

object-oriented (OO) concepts into a High-Level Architecture

(HLA)-networked simulation, thus addressing sustainability of

the HLA methodology into the future. The paper aims at

developing an object-oriented layer (OOL) providing a

high-level mechanism for HLA data exchange through local

objects. It exploits the technical advantages provided by

layering, object-oriented programming, strict HLA object

interface specification, and data-centric execution while

presenting an application for simulation of CI. The proposed

architecture can be used as a research platform, in which new

models of CI elements and interdependencies under natural

disasters can be evaluated.

Index Terms—HLA/RTI, object-oriented programming,

critical infrastructure, crisis management, natural disasters.

I. INTRODUCTION

Nowadays, it is registered a growth in number and severity

of natural disasters compared to previous years. It is necessary

be pointed out that the negative impact of natural disasters on

sustainable development of the critical infrastructure (CI) also

increases. In this context it is noted that the critical

infrastructure generally includes all systems and assets, both

physical and virtual, which make vital contributions to

national security, economic stability, public health, or safety

[1]. Moreover, the infrastructure elements have complex

relationships and interdependencies that cross critical

infrastructure boundaries. This circumstance increases the

range of threats, including threats, including threats caused by

natural disasters. It raises the question for effective

emergency management due to natural disaster taking into

account the critical infrastructure interdependencies about

vulnerability and consequences [2].

On other hand, as it is known the interdependencies

between the components resulting in the mutual provision of

services and use of common communications network, these

supported in part by the Bulgarian National Science Fund for the support

under the Grant NO. DFNI-I02/ 15 from 2014.

G. Kirov and P. Zlateva are with the ISER, Bulgarian Academy of

Sciences, Sofia 1113, Bl. 2, Bulgaria (e-mail: g_tk@abv.bg,

plamzlateva@abv.bg)

D. Velev is with the University of National and World Economy, Sofia

1700, Bulgaria (e-mail: dgvelev@unwe.bg).

systems cannot be studied directly. For example, it is not

possible to directly test the effect of controlled shut-down

procedures for segments of the power grid, the spread of a

computer virus, or the spread of a disease vector under

different vaccination options without having potentially

drastic economic, safety or health impacts. For infrastructure

networks, replicating all or even part of the physical

infrastructure may be prohibitively expensive. In both these

cases, computational modeling and simulation provides a safe

and cost-effective alternative that can help enormously in

developing needed understanding.

The modeling and analysis of interdependencies between

critical infrastructure elements is a relatively new and very

important field of study. A number of simulation models have

been developed and more are being developed for studying

individual aspect of infrastructure elements [3]. The value of

these models decreases because they don’t consider all

aspects of a disaster. The simulation models addressing

different aspects of an emergency situation need to be

integrated in common framework to provide the whole picture

of a situation to planners, trainers, and responders [4], [5].

Fig. 1. Properties of the architecture for simulation of complex systems.

Distributed simulation technologies are a paradigm to

model dynamic, heterogeneous, and spatial distributed

systems. They not only aim at speeding up simulations, but

also serve as strategic technologies for linking simulation

components of various types [6]. Distributed technologies can

run with different components installed on different

computers linked via a local network so as to accelerate the

execution time of the simulation. Although the contemporary

distributed simulation technologies, and especially, HLA/RTI

(High Level Architecture/Run Time Infrastructure) standard

has a standardized structure for object models, they not

Software Architecture for Rapid Development of

HLA-Integrated Simulations for Critical Infrastructure

Elements under Natural Disasters

G. Kirov, P. Zlateva, and D. Velev

International Journal of Innovation, Management and Technology, Vol. 6, No. 4, August 2015

244DOI: 10.7763/IJIMT.2015.V6.610

Manuscript received May 28, 2015; revised July 27, 2015. This work was

completely correspond to common definitions of object

models in object-oriented (OO) analysis and design

techniques [7]. Given the current state of shrinking budgets

and growing number of interdependent systems, it is obvious

to almost any observer in the field of the software simulation

that there is a critical need for an architecture that exploits the

technical advantages provided by layering, object-oriented

programming, strict HLA object interface specification, and

data-centric execution (see Fig. 1).

The purpose of the paper is to present architecture for rapid

development of HLA-integrated simulations for analysis of

the interdependencies between critical infrastructure elements.

This architecture allows HLA simulation systems to be

integrated easily into larger network-centric systems.

II. INTERDEPENDENCIES AND CASCADING EFFECTS

In this section, the interdependencies and cascading effects

between the infrastructure objects are analyzed. According to

one of the most widespread definition, interdependency is a

bidirectional relationship between infrastructure objects

through which the state of each infrastructure object is

influenced by the state of the other. The interrelationship

among infrastructure objects is a precondition for cascading

effects. The cascading effects can occur when an

infrastructure object disruption spreads beyond itself to cause

appreciable impact on other infrastructure objects, which in

turn cause more effects on still other infrastructure objects.

The consequences of the cascading effects due to an

infrastructure failure can range from the mild to the

catastrophic.

For example, interdependencies exist between different

sectors: national energy, water supply system, transport,

telecommunication, and emergency services. A power outage

can cause an effect on water supply system. The impact of the

disruption may not stop at this level. It may go on to adversely

affect other critical infrastructure objects (see Fig. 2).

Fig. 2. Critical infrastructure interdependencies.

According to the system analysis there are four classes of

interdependencies: physical, cyber, geographic, and logical

[8], [9]:

Physical interdependency: two infrastructure objects are

physically interdependent if the state of each depends upon

the material output of the other. A requirement for this

interdependency is a physical reliance on material flow from

one infrastructure to another.

Cyber interdependency: two infrastructure objects are

cyber interdependent if the state of the one depends on

information transmitted through the information system of the

other. This is relatively new type of interdependency which

basic element is information transfer between infrastructure

objects. For example, a lot of infrastructure objects use the

SCADA systems for control and analysis. Therefore, the

infrastructure objects have an information dependency from

the SCADA systems.

Geographic interdependency: two infrastructure objects

are geographically interdependent if a local environmental

event can change the state in the two objects. The main

requirement for this type of interdependency is the existence

of a physical proximity. For example, a fire may affect and

disrupt all the infrastructure objects located in the area. It is

important to notice, that geographic interdependency exists

not due to physical connections between infrastructure

objects; rather, it arises from the influence the event exerts on

all infrastructure objects simultaneously.

Logical interdependency: two infrastructures are logically

interdependent if the state of each depends upon the state of

the other via some mechanism that is not a physical, cyber, or

geographic connection. This type of interdependency shows

that infrastructure components may affect societal factors

such as public opinion and cultural issues. For example,

various regulatory mechanisms can give rise to logical linkage

among two or more infrastructure objects [10].

One of the most used ways to present the infrastructure

interferences is an interdependency matrix (see Table I).

It presents by coefficients (ri,j) the influence or impact, that

one infrastructure object can have, either directly or indirectly,

upon another. The coefficients are defined by experts, which

are responsible for an emergency management.

When the experts fill in the interdependency matrix they

have to take into account the next two definitions:

 An infrastructure network I is a set of nodes, which are

interconnected each other by a relation (connection)

presented by function. The relation can be directional

or bi-directional. The internal dependencies

(connections) in an infrastructure I are presented by

edges (a, b), with a, b ∈ I.

TABLE I: INTERDEPENDENCY MATRIX

Interdependency matrix

Infrastructu

re objects

Object 1 Object 2 … Object n

Object 1 r1,2 r1,.. r1,n

Object 2 r2,1 r2,.. r2,n

 r.,1 r.,2 r..,n

Object n rn,1 rn,2 rn,..

 If Ii and Ij are infrastructure networks, in which i ≠ j, a

∈ Ii, and b ∈ Ij, then interdependency are external one.

It is defined as relation between infrastructures and

presented by edge (a,b). It means that node b is

dependent upon node a: (a,b) → (b,a).

The interdependency analysis shows that the experts in the

International Journal of Innovation, Management and Technology, Vol. 6, No. 4, August 2015

245

area of Critical Infrastructure Protection (CIP) have

recognized a lot of problems inherent to the complexity of

national and multinational infrastructures. As an attempt to

address these problems a number of approaches exist for

investigation the interdependencies by showing the critical

infrastructures and the ways in which they depend on each

other. However, there is no quantitative assessment of the

degree to which these infrastructures depend upon each other.

Moreover, there is no an exact mathematical model, which

evaluates the changes to the economy that result from these

interdependencies.

Therefore, the above-mentioned considerations raise

questions about the approaches for the infrastructure

interdependencies. Analytical approaches study the problem

based on over-simplified assumptions. This means the final

results to be biased towards interdependencies under ideal

conditions. The inaccuracy of analytical models focuses the

expert attention on simulation to obtain correct results.

III. DISTRIBUTED SIMULATION TECHNOLOGIES

The design and execution of distributed simulations has

become increasingly important for the analysis of complex

systems. In recent years, the Department of Defense (DOD)

has invested considerable resources in infrastructures for

distributed simulation modeling. The main simulation

technologies are based on Distributed Interactive Simulation

(DIS) protocol, Aggregate Level Simulation Protocol (ALSP),

and High Level Architecture (HLA) (see Fig. 3). While the

fundamental structure of each is similar, there are differences

that can impact an application developer or the administrator

of a distributed simulation exercise.

In 1983 the Defense Advanced Research Projects Agency

(DARPA) sponsored the SIMNET (SIMulation NETworking)

program to create a new technology to expand the current

single task trainers into networked team trainers. SIMNET

was tremendously successful, producing over 300 networked

simulators.

The first standard for interactive distributed simulation was

IEEE 1278.1, also known as the Distributed Interactive

Simulation (DIS) protocol. Although DIS was originally

developed for military applications, the technology is well

suited as a simulator interoperability standard for civil

application areas.

Fig. 3. Historical perspective.

It was based on the use of standard formatted packets,

designed for the data required by these specific applications.

DIS allows geographically separated simulators to work

together, interacting in real-time, to provide predictions just

like a single integrated simulator. The technology also allows

real entities to be included in the simulation loop. The

foundation of DIS is a standard set of messages and rules,

called Protocol Data Units (PDUs), used for sending and

receiving information across a computer network. The most

common message is the Entity State PDU which represents all

of the state information about a simulated entity that another

simulator needs to know. The fact that there is no central

server is perhaps the most surprising DIS characteristic. DIS

used broadcast architecture, in which all data is transmitted to

all simulators where it can be rejected or accepted depending

on the receivers’ needs. By eliminating a central server

through which all messages pass, DIS dramatically reduces

the time needed for a simulator to send important information

to another simulator [11].

However, DIS has some drawbacks. Three features in the

underlying data transport mechanism cause problems. Firstly,

messages can get lost or arrive in the wrong order due to the

use of the UDP/IP protocol. Secondly, the messages sent are

part of standardised, fixed-sized Protocol Data Units (PDUs),

although generic PDUs exist to communicate any type of data.

Finally, due to the broadcast mechanism, the scaleability is

rather limited. In the case that simulation experiments have to

be repeatable, reliable data transfer is crucial [12].

Problems due to the inflexibility and lack of scalability of

DIS approach have led to a different approach, the High Level

Architecture (HLA), which becomes IEEE 1516 Standard.

The HLA defines a set of rules governing how simulations,

now referred to as federates, interact with one another. The

federates communicate via a communication environment

called the Runtime Infrastructure (RTI) and use an Object

Model Template (OMT) which describes the format of the

data. The HLA does not specify what constitutes an object,

nor the rules of how objects interact. This is a key difference

between DIS and the HLA.

Besides facilitating interoperability between simulations,

the HLA provides the federates a more flexible simulation

framework. Unlike DIS where all simulations receive every

piece of data broadcast, the HLA federates use data

management mechanism based on publishing and subscribing.

These facts make it possible to have more simulations on a

network at one time because the amount of data being sent is

reduced. The simulation software is also simplified because it

does not need to process extraneous information.

The Aggregate Level Simulation Protocol (ALSP) is a

protocol and supporting software that enables simulations to

interoperate with one another. Replaced by the HLA, it was

used by the US military to link analytic and training

simulations.

The potential advantages of distributed simulation

technologies are evident: increased flexibility, building on

existing software and communications standards,

maximisation of the use of existing simulation assets, and thus

reduced costs.

IV. HLA/RTI SIMULATION STANDARD

The proposed architecture allows communication between

simulation models based on High Level Architecture/Run

International Journal of Innovation, Management and Technology, Vol. 6, No. 4, August 2015

246

Time Infrastructure (HLA/RTI) standard for information

exchange. HLA is the IEEE standard for software architecture

of interoperable distributed simulations. It aims to establish a

common high-level simulation architecture to facilitate the

interoperability of all types of models and simulations among

themselves, as well as to facilitate the reuse of modeling and

simulation (M&S) components [13]. HLA allows experts to

combine computer simulations into larger simulation. For

instance, the experts might want to combine simulations of

critical infrastructures in several different regions of the

country. HLA can extend simulation later by adding new

models or simulations, for example new models of

infrastructures.

HLA provides the technical framework of simulation

development in order to guarantee interoperability and

reusability, and common services that are applicable to all

types of simulations. This simulation architecture is designed

for rapid integration of simulation components from various

sources. It is comprised of three elements [14]:

 HLA Rules: A set of rules which must be followed to

achieve proper interaction of simulations in a

federation. These describe the responsibilities of

simulations and of the runtime infrastructure in HLA

federations. HLA rules describe the design goals and

constraints for HLA compliant federations and

federates.

 Interface Specification: Definition of the interface

functions between the Run Time Infrastructure (RTI)

and the federates in the HLA simulations.

Implementation of RTI have a variety of forms. There

are currently RTI application programming interfaces

in CORBA IDL, C++, and Java as part of the HLA.

 Object Model Template: The prescribed common

method for recording the information contained in the

required HLA Object Model for each federation and

simulation in terms of its objects and interactions. The

OMT prescribes the allowed structure of FOM.

The relationships of HLA components are shown in Fig. 4.

The conceptual model includes simulators, data collectors,

passive viewers, and live surrogates simulations. They have a

single point of attachment to the RTI. The federate might be a

surrogate for human interactions. In this role it can effects the

states of the remaining federates in simulation [15], [16].

Fig. 4. HLA components.

The framework of the HLA that consists of several

functional components:

Federate: All applications participating in a federation are

called federates. In reality, this may include simulation

models, data collectors, simulators, autonomous agents,

passive viewers, or live entity surrogates simulations. The

federate is a member of a HLA Federation that can represent a

single model of the critical infrastructure or entire national

critical infrastructure.

Federation: The combined simulation system created from

set of federates that are interconnected with each other.

Information exchange in the federation is based on a common

object model, called Federation Object Model (FOM). It

contains exchange data created by the federation developer

that shows the relationships between federates. It means,

FOM defines object classes, their attributes and interaction

classes that are commonly used and exchanged among

federates in the federation. The Simulation Object Model

(SOM) is the model that defines objects, attributes and

interactions in each federate that can be used from the other

federates.

Federation Execution: Simulation session, in which a

number of Federates participate, is called a Federation

Execution. All simulated entities, such as different

infrastructure elements or threats, are referred to as objects.

Run Time Infrastructure: RTI is a supporting software that

provides information exchange mechanism between federates

in the distributed environment regarding FOM. It implements

a distributed operating system and forms the basic software

layer for HLA applications. It does not maintain information

about the state of the federates, nor does it handle any

semantics associated with the interaction between federates

like what coordinate systems to use or what happens during a

collision. Also, it does not specify the exact byte layout of

data sent across the network. RTI and federates are software

components. An RTI may support different federation

execution at once.

RtiExec: RTIExec is a global process that controls the

creation and destruction of the federation (simulation) in the

network. Each federation is characterized by a single

FedExec.

FedExec: FedExec is a process that manages federates in

the federation. It is responsible for creation, joining and

destruction of the federates during the simulation execution.

FedExec process is created by the first federate in the

federation.

LibRTI: LibRTI is a library that provides communication

functions and services specified in the HLA/RTI standard [17]

to federate developers. These RTI services are implemented

in C++ or Java languages. The software specialists use

LibRTI library to call the RTI services. A federate exchange

information with the other federates, RtiExec, Fed Exec

through LibRTI.

The HLA object model supports information exchange

between federates within the federation. The exchange of

information takes the form of objects and interactions.

Federates communicate with their peers by sending

interactions or updating object attributes. Federates do not

communicate directly with each other and all communication

is administrated by the RTI.

International Journal of Innovation, Management and Technology, Vol. 6, No. 4, August 2015

247

Object classes are comprised of attributes. Object classes

describe types of things that can persist. Each object in a

moment of time is characterized by a state, which is defined

by a set of current values of its attributes. Federate, which

manages an object (more precisely, the object attributes), may

alter the state of the object by changing the attribute values.

Through RTI services, the federate transmits the new values

of the object to all federates in the simulation. In this case it is

assumed that the federate updates the attributes.

Interactions classes [16] are comprised of parameters. An

interaction is a single action caused by a change in the state of

an object from another federation. Interaction classes describe

types of events. Objects are similar to interactions in so much

as objects are comprised of attributes and interactions are

comprised of parameters. The basic difference between

objects and interactions is persistence - objects persist,

interactions do not.

Fig. 5. Traditional HLA simulation.

A traditional HLA federate (Fig. 5) can be presented as an

integrated program, consisting of a simulation model and

Local RTI Component (LRC). The simulation model is a

physical, mathematical, or logical representation of processes

and systems (user logic), whereas the LRC services it by

interacting and synchronizing with other federates. Therefore,

the simulation model performs local computing, while the

LRC realizes information exchange for the model. It is very

difficult to combine the above components in a normal

federate, due to the tight coupling of the simulation model and

the LRC [6].

In conclusion, the HLA FOM offers an object model that

does not completely correspond to common definitions of

object models in the object-oriented programming. The main

purpose of the HLA FOM is to achieve interoperability

between participants (federates) in the simulation, rather than

between individual objects from different systems (federates).

HLA doesn’t support the transference of objects and their

behaviors between joined federates.

Therefore, there are fundamental differences between

object-oriented programming and HLA. A number of

assumptions about how a federate wants to use HLA services

must be made in order to support these services in an

object-oriented API. From the other hand, it is also necessary

to make a number of assumptions about the HLA interactions

between federates in order to fully use object-oriented

features such as method invocations [18].

V. OBJECT-ORIENTED HLA/RTI SIMULATION

ARCHITECTURE

This section shows sample code that implements the

architecture for Object-Oriented (OO) HLA/RTI simulation.

The reference model of HLA object is C + + class, which sets

the standard for the construction of HLA objects. It provides

performance requirements for joint and resign of HLA objects

in a common simulation. The reference model implements the

principal characteristic of the HLA simulations - modularity

and expandability.

The object-oriented concept [1] of the HLA architecture is

based on a strict hierarchical organization of classes that

satisfy the requirements for building complex distributed

simulation systems based on HLA standard. Basic class

hierarchy is a class StandAlone. It contains features that allow

the HLA classes to be integrated into the simulation

environment. StandAlone has virtual methods and data

members that HLA objects must inherit to be able to

participate in the information exchange.

The remaining part of this point is a principle description of

the reference model of an OO HLA object - data, methods and

working principle. HLA_Model class specifies the structure

of the OO HLA object. It inherits the class StandAlone,

thereby receiving all features necessary for participation in

the HLA simulation (Fig. 6).

HLA_Model class contains two sections that are relevant to

the HLA/RTI standard. The first section contains declarations

of state variables. In the terminology of C ++ these variables

are presented as a members-variables (data) to the class

HLA_Model. The second section contains virtual functions

inherited from the class StandAlone. These virtual functions

must be implemented, as they are called sequentially in the

simulation loop. Virtual functions meet the following basic

steps defined by the HLA standard:

 processing upon receipt of event (interaction);

 calculation of state variables for each time step;

 sending the new values for the HLA models through

RTI.

An example for building a simple OO HLA model of

Hurricane is shown. It was developed following the

specifications given into the reference model of a HLA object

(HLA_Model). A disaster class (Fig. 7) is created initially,

and then it inherits the base class StandAlone. It encapsulates

common features of all disasters - speed, position,

identification and etc.

Fig. 6. C++ HLA_Model class.

International Journal of Innovation, Management and Technology, Vol. 6, No. 4, August 2015

248

In the class Disaster are not implemented virtual functions

inherited from StandAlone because the simulation application

never creates an object of class Disaster. This class is used

only to be inherited by classes that are models of specific

disaster such as a hurricane (see Fig. 8).

Fig. 7. C++ Aircraft class.

Fig. 8. C++ F16 class.

An instance of HLA object class Hurricane is created by the

constructor of the Class Hurricane. It initializes the state

variables of the model and carries out registration of the

object into the RTI. As a result, an object handle of the

objectHandle is returned. It is a unique number that identifies

the object instance into RTI. Object instance is a global

representation maintained by the LRC. The same object

instance is known to all federates by its globally unique

handle value.

Like any simulation, HLA simulation is moved by the main

simulation loop. The functions of the main simulation loop

are related to: time management (real time simulation, fast

simulation, etc.), increasing the simulation time with a time

step, calling the virtual functions of the StandAlone class. All

work on the processing of the OO HLA objects is done by the

simulation loop. It is continuously repeated during which the

virtual function of all OO HLA simulation objects are

executed and attributes are updated. The simulation loop (Fig.

9) calls the virtual functions of the implemented HLA models

because of polymorphism obtained by an inheritance

StandAlone class.

Fig. 9. Simulation loop.

The state variables are recalculated on an each time step of

the simulation time by the function update(). In the example,

the HLA object Hurricane recalculates the new position of the

disaster. The updated values of the state variables are sent to

the RTI environment by SendUpdate() where all subscribing

applications can get them. When an HLA update is received

the corresponding mirror object is updated, enabling the

application to receive the value whenever needed.

VI. OOL COMMUNICATION MODEL

The proposed architecture uses a publish-subscribe

communication architecture that supports object-oriented

updates to HLA object instances. The sequence diagrams (Fig.

10 and Fig. 11) present two parts of the communication model.

The figures show the interactions between the model

components need to work together to accomplish a

communication task.

The publishing application (Fig. 10) creates a new HLA

object for each information source (disaster, infrastructure

objects, etc.). This object is stored in the static list of objects

(standAloneList).

As a result, there is no need to recreate a HLA object upon

receiving information from the same source. Therefore, when

you need to send updated data for the same information

source the program looks for the HLA object that has already

been created. Then the application sends data by calling the

sendUpdate() of the HLA object, thus making the connection

between OOL and RTI functions.

Fig. 10. Publishing application.

International Journal of Innovation, Management and Technology, Vol. 6, No. 4, August 2015

249

Fig. 11. Subscribing application.

In the subscribing mode (Fig. 11), the application accesses

data by the function receiveUpdate(). It is a Callback function

that has to be implemented by the programmer. The Callback

function reads all data of a given HLA instance and searches

in the list of HLA objects (standAloneList) if there is an

object whose key matches this data. Once the application

finds a relevant instance of the class the attribute values are

updated.

VII. A CASE STUDY: AN EXAMPLE OF INTEGRATED

SIMULATION SYSTEM

To verify the effectiveness of the new simulation

technology, a case study was done on an integrated simulation

of critical infrastructure interdependencies and their control

mechanisms. The purpose of the integrated simulation is to

observe how the critical infrastructure objects behave when

unordinary events occur. The integrated simulation system is

created from a set of models that are interconnected with each

other. The proposed simulation system consists of several

functional components [19]:

Simulation models: All simulated entities, such as different

infrastructure elements or threats, are referred to as simulation

models. It includes models of infrastructure objects, data

collectors, and disasters. The simulation models consist of

C++ code that access communication services provided by

the RTI communication environment. This mechanism allows

communication between simulation models based on HLA

standard through RTI infrastructure. The communication

between infrastructure objects in the integrated simulation is

based on a common object model. It contains exchange data

created by the developer that shows the relationships between

models. Therefore, the common object model defines object

classes, their attributes and interaction classes that are

commonly used and exchanged among models in the

simulation.

Viewer application: The viewer is developed to provide an

integrated display environment (Fig. 12). It can act as a

passive recipient and display simulation data from the rest of

simulation system. The viewer is an important part of the

simulation system because it provides analysis tools and

playback capabilities. The viewer communicates with the

simulation models over TCP/IP protocol that allows different

models to reside on separate computers [5].

As a result of repeated execution of simulation, data is

collected and analyzed, and the results are documented. The

simulation results are presented in Table I. It display

simulation time and state variables of the interdependent

models exchanged through RTI environment.

A row of the table represents the time series of a state

variable. A column represents the set of the simulated

variables. The state of the variables at time t depends only on

the states before t. The simulation results can be used for an

analysis and assessment of the cascading effects and

improving critical infrastructure protection.

VIII. CONCLUSIONS

The proposed simulation architecture is based on a

distributed framework that can be rapidly implemented with

interoperability standards for the modeling and simulation.

Together, the framework and interoperability standards can

significantly increase the use of modeling and simulation for

natural disaster management. In turn, it will help improve the

emergency management capabilities. This approach provides

a possibility of doing an assessment of the elements of the CI

and their interdependencies affected by an emergency

situation due to natural disasters (see Table II).

TABLE II: SIMULATION RESULTS

Space-time graph for disaster simulation

Hurricane

Latitude 43.2299 43.2269 43.0365 43.9603 42.7368 42.5868

Longitude 23.3271 23.3336 23.7375 23.8540 24.2699 24.5196

Speed [km/h] 190 190 220 220 220 220

Power substation

Latitude 43.0295 43.0295 43.0295 43.0295 43.0295 43.0295

Longitude 24.0012 24.0012 24.0012 24.0012 24.0012 24.0012

Damages [%] - - 15 30 35 35

Residential area

Latitude 42.7514 42.7514 42.7514 42.7514 42.7514 42.7514

Longitude 24.6549 24.6549 24.6549 24.6549 24.6549 24.6549

People in disaster

area [%]
- - - 2 23 58

Electricity

blackout [%]
- - - 32 43 56

Damaged

buildings [%]
- - - - 16 23

Simulation time [sec] 300 310 880 1120 1750 2160

International Journal of Innovation, Management and Technology, Vol. 6, No. 4, August 2015

250

Fig. 12. Viewer application for hurricane simulation.

The main concept relies on the idea of providing a

structural methodology and tools for the use of the methods to

design, develop, and implement the HLA system, and obtain

the interoperation and reuse of the simulation models. The

potential advantages of the proposed architecture are evident:

increased flexibility, building on existing software and

communications standards, and maximisation of the use of

existing simulation models.

With HLA/RTI simulation infrastructure

interdependencies under natural disasters can be modeled

with almost any level of detail desired and the design space

can be explored more finely than is possible with

analytical-based approaches or measurements. HLA

simulation can combine different simulation models easily,

and incorporate measured characteristics of infrastructure

objects and their interdependencies.

ACKNOWLEDGMENT

The authors express their gratitude to the Bulgarian

National Science Fund for the financial support under the

Grant No. DFNI-I02/ 15 from 2014, titled "Information

System for Integrated Risk Assessment from Natural

Disasters".

REFERENCES

[1] P. Edwards, “Millennial reflections on computers as infrastructure,”

History & Technology, vol. 15, pp. 7-29, 1998.

[2] M. Swanson, A. Wohl, L. Pope, T. Grance, J. Hash, and R. Thomas,

Contingency Planning Guide for Information Technology Systems,

NIST Special Publication 800-34, 2002.

[3] S. Jain and C. McLean, “A framework for modelling and simulation of

emergency response,” in Proc. 35th Conference on Winter Simulation:

Driving Innovation, New Orleans, Louisiana, pp. 1068-1076, 2003.

[4] S. Jain and R. McLean, “Modelling and simulation of emergency

response,” Workshop Report, Relevant Standards and Tools, National

Institute of Standards and Technology Internal Report, NISTIR-7071,

2003.

[5] G. Kirov and V. Stoyanov, “Software architecture for implementation

of complex simulation systems,” Cybernetics and Information

Technologies, vol. 8, no. 4, pp. 57-68, 2008.

[6] D. Chen, S. J. Turner, W. Cai, and M. Xiong, “A decoupled federate

architecture for high level architecture-based distributed simulation,” J.

Parallel Distrib. Comput., vol. 68, pp. 1487-1503, 2008.

[7] A. Tolk, “HLA-OMT versus traditional data and object modeling,” in

Proc. Command and Control Research and Technology Symposium,

Annapolis, Maryland, 2001.

[8] S. Rinaldi, J. Peerenboom, and T. Kelly, “Identifying, understanding

and analyz-ingcritical infrastructure interdependencies,” IEEE Control

Systems Magazine, pp. 11-25, 2001.

[9] P. Pederson, D. Dudenhoeffer, S. Hartley, and M. Permann, “Critical

infrastructure interde-pendency modeling: A survey of U.S. and

international research,” Prepared for the technical support working

group under work for others agreement 05734, 2006.

[10] S. Rinaldi, “Modeling and simulating critical infrastructures and their

interdependencies,” in Proc. IEEE 37th Hawaii International

Conference on System Sciences, 2004.

[11] L. Argüello and J. Miró, “Distributed interactive simulation for space

projects,” ESA bulletin, vol. 102, 2000.

[12] G. Jense, H. Kuijpers, and A. Dumay. DIS and HLA: Connecting

people, simulations and simulators in the military, space and civil

domains. [Online]. Available:

http://wwwpa.win.tue.nl/kuijpers/publications/iaf97.pdf.

[13] IEEE Standard for Modeling and Simulation (M&S), IEEE Std

1516.2-2000, 2010.

[14] F. Kuhl, R. Weatherly, and J. Dahmann, Creating Computer

Simulation Systems: An Intro-duction to the High Level Architecture,

Prentice Hall PTR, 1999.

[15] J. Kim and T. Kim, “Hierarchical HLA: Mapping hierarchical model

structure into hierarchical federation, M&S-MTSA'06, Ottawa, Canada,

pp. 75-80. 2006.

[16] The HLA. [Online]. Available:

http://www.dmso.mil/public/transition/hla

[17] S. Kanai and T. Kishinami, “Multi-disciplinary Distributed Simulation

for designing IT Devices by integrating off-the-shelf CAX systems

based on HLA,” in Proc. Fall 2004 Simulation Interoperability

Workshop, 2004, pp. 315-325.

[18] B. Möller and F. Antelius, “Object-oriented HLA - Does one size fit

all,” in Proc. 2010 Spring Simulation Interoperability Workshop,

10S-SIW-058, Simulation Interoperability Standards Organization.

[19] G. Kirov, “Integration of simulation models of the elements of the

critical infrastructure in common simulation environment,” in Proc.

Scientific Support of the Transformation in Security Sector

Conference, CNSDR-BAS, Sofia, 2006, pp. 143-159.

Georgi Kirov is currently an associate professor at the Institute of System

Engineering and Robotics at the Bulgarian Academy of Sciences, Sofia,

Bulgaria. He holds the M.Sc degree in computer systems from the Sofia

Technical University and the Ph.D. degree in soft computing technologies

from the Institute of Computer and Communication Systems. His main areas

of academic and research interest are distributed information technologies,

computer simulation, and risk management.

Plamena Zlateva is currently an associate professor at

the Institute of System Engineering and Robotics at the

Bulgarian Academy of Sciences, Sofia, Bulgaria. She

hods M.Sc. degrees in applied mathematics from the

Sofia Technical University and in economics from the

Sofia University St. Kl. Ohridski, and Ph.D. degree in

manufacturing automation from the Institute of Conrol

and System Research - BAS. Her main areas of

academic and research interest are control theory,

mathematical modeling and risk management.

Dimiter Velev is a professor in the Department of

Information Technologies and Communications at the

University of National and World Economy, Sofia,

Bulgaria. He holds the M.Sc. degree in

electroengineering from the Sofia Technical University,

Bulgaria and the Ph.D. degree in engineering sciences

from the Institute of Modeling Problems in power

engineering at the National Academy of Sciences of

Ukraine, Kiev, Ukraine. His main areas of academic

and research interest are internet-based business

systems modeling and development, service oriented architectures, online

social networks, cloud computing, web applications development and

programming.

International Journal of Innovation, Management and Technology, Vol. 6, No. 4, August 2015

251

