
  

 

Abstract—The paper proposes a software architecture for 

rapid development of high-level architecture (HLA)-integrated 

simulations for critical infrastructure elements under natural 

disasters. It considers the main issues involved in a simulation of 

complex interdependent systems, which are a part of the critical 

infrastructure (CI). It investigated an implementation of the 

object-oriented (OO) concepts into a High-Level Architecture 

(HLA)-networked simulation, thus addressing sustainability of 

the HLA methodology into the future. The paper aims at 

developing an object-oriented layer (OOL) providing a 

high-level mechanism for HLA data exchange through local 

objects. It exploits the technical advantages provided by 

layering, object-oriented programming, strict HLA object 

interface specification, and data-centric execution while 

presenting an application for simulation of CI. The proposed 

architecture can be used as a research platform, in which new 

models of CI elements and interdependencies under natural 

disasters can be evaluated. 

 
Index Terms—HLA/RTI, object-oriented programming, 

critical infrastructure, crisis management, natural disasters.  

 

I. INTRODUCTION 

Nowadays, it is registered a growth in number and severity 

of natural disasters compared to previous years. It is necessary 

be pointed out that the negative impact of natural disasters on 

sustainable development of the critical infrastructure (CI) also 

increases. In this context it is noted that the critical 

infrastructure generally includes all systems and assets, both 

physical and virtual, which make vital contributions to 

national security, economic stability, public health, or safety 

[1]. Moreover, the infrastructure elements have complex 

relationships and interdependencies that cross critical 

infrastructure boundaries. This circumstance increases the 

range of threats, including threats, including threats caused by 

natural disasters. It raises the question for effective 

emergency management due to natural disaster taking into 

account the critical infrastructure interdependencies about 

vulnerability and consequences [2].  

On other hand, as it is known the interdependencies 

between the components resulting in the mutual provision of 

services and use of common communications network, these 
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systems cannot be studied directly. For example, it is not 

possible to directly test the effect of controlled shut-down 

procedures for segments of the power grid, the spread of a 

computer virus, or the spread of a disease vector under 

different vaccination options without having potentially 

drastic economic, safety or health impacts. For infrastructure 

networks, replicating all or even part of the physical 

infrastructure may be prohibitively expensive. In both these 

cases, computational modeling and simulation provides a safe 

and cost-effective alternative that can help enormously in 

developing needed understanding. 

The modeling and analysis of interdependencies between 

critical infrastructure elements is a relatively new and very 

important field of study. A number of simulation models have 

been developed and more are being developed for studying 

individual aspect of infrastructure elements [3]. The value of 

these models decreases because they don’t consider all 

aspects of a disaster. The simulation models addressing 

different aspects of an emergency situation need to be 

integrated in common framework to provide the whole picture 

of a situation to planners, trainers, and responders [4], [5]. 

 
Fig. 1. Properties of the architecture for simulation of complex systems. 

 

Distributed simulation technologies are a paradigm to 

model dynamic, heterogeneous, and spatial distributed 

systems. They not only aim at speeding up simulations, but 

also serve as strategic technologies for linking simulation 

components of various types [6]. Distributed technologies can 

run with different components installed on different 

computers linked via a local network so as to accelerate the 

execution time of the simulation. Although the contemporary 

distributed simulation technologies, and especially, HLA/RTI 

(High Level Architecture/Run Time Infrastructure) standard 

has a standardized structure for object models, they not 
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completely correspond to common definitions of object 

models in object-oriented (OO) analysis and design 

techniques [7]. Given the current state of shrinking budgets 

and growing number of interdependent systems, it is obvious 

to almost any observer in the field of the software simulation 

that there is a critical need for an architecture that exploits the 

technical advantages provided by layering, object-oriented 

programming, strict HLA object interface specification, and 

data-centric execution (see Fig. 1). 

The purpose of the paper is to present architecture for rapid 

development of HLA-integrated simulations for analysis of 

the interdependencies between critical infrastructure elements. 

This architecture allows HLA simulation systems to be 

integrated easily into larger network-centric systems. 

 

II. INTERDEPENDENCIES AND CASCADING EFFECTS 

In this section, the interdependencies and cascading effects 

between the infrastructure objects are analyzed. According to 

one of the most widespread definition, interdependency is a 

bidirectional relationship between infrastructure objects 

through which the state of each infrastructure object is 

influenced by the state of the other. The interrelationship 

among infrastructure objects is a precondition for cascading 

effects. The cascading effects can occur when an 

infrastructure object disruption spreads beyond itself to cause 

appreciable impact on other infrastructure objects, which in 

turn cause more effects on still other infrastructure objects. 

The consequences of the cascading effects due to an 

infrastructure failure can range from the mild to the 

catastrophic.  

For example, interdependencies exist between different 

sectors: national energy, water supply system, transport, 

telecommunication, and emergency services. A power outage 

can cause an effect on water supply system. The impact of the 

disruption may not stop at this level. It may go on to adversely 

affect other critical infrastructure objects (see Fig. 2). 

 

 
Fig. 2. Critical infrastructure interdependencies. 

 

According to the system analysis there are four classes of 

interdependencies: physical, cyber, geographic, and logical 

[8], [9]: 

Physical interdependency: two infrastructure objects are 

physically interdependent if the state of each depends upon 

the material output of the other. A requirement for this 

interdependency is a physical reliance on material flow from 

one infrastructure to another. 

Cyber interdependency: two infrastructure objects are 

cyber interdependent if the state of the one depends on 

information transmitted through the information system of the 

other. This is relatively new type of interdependency which 

basic element is information transfer between infrastructure 

objects. For example, a lot of infrastructure objects use the 

SCADA systems for control and analysis. Therefore, the 

infrastructure objects have an information dependency from 

the SCADA systems. 

Geographic interdependency: two infrastructure objects 

are geographically interdependent if a local environmental 

event can change the state in the two objects. The main 

requirement for this type of interdependency is the existence 

of a physical proximity. For example, a fire may affect and 

disrupt all the infrastructure objects located in the area. It is 

important to notice, that geographic interdependency exists 

not due to physical connections between infrastructure 

objects; rather, it arises from the influence the event exerts on 

all infrastructure objects simultaneously. 

Logical interdependency: two infrastructures are logically 

interdependent if the state of each depends upon the state of 

the other via some mechanism that is not a physical, cyber, or 

geographic connection. This type of interdependency shows 

that infrastructure components may affect societal factors 

such as public opinion and cultural issues. For example, 

various regulatory mechanisms can give rise to logical linkage 

among two or more infrastructure objects [10]. 

One of the most used ways to present the infrastructure 

interferences is an interdependency matrix (see Table I).  

It presents by coefficients (ri,j) the influence or impact, that 

one infrastructure object can have, either directly or indirectly, 

upon another. The coefficients are defined by experts, which 

are responsible for an emergency management. 

When the experts fill in the interdependency matrix they 

have to take into account the next two definitions: 

 An infrastructure network I is a set of nodes, which are 

interconnected each other by a relation (connection) 

presented by function. The relation can be directional 

or bi-directional. The internal dependencies 

(connections) in an infrastructure I are presented by 

edges (a, b), with a, b ∈ I. 

 
TABLE I: INTERDEPENDENCY MATRIX 

Interdependency matrix 

Infrastructu

re objects 

Object 1 Object 2 … Object n 

Object 1   r1,2 r1,..  r1,n 

Object 2 r2,1    r2,..  r2,n   

 r.,1 r.,2    r..,n  

Object n rn,1  rn,2  rn,..    

 

 If Ii and Ij are infrastructure networks, in which i ≠ j, a 

∈ Ii, and b ∈ Ij, then interdependency are external one. 

It is defined as relation between infrastructures and 

presented by edge (a,b). It means that node b is 

dependent upon node a: (a,b) → (b,a). 

The interdependency analysis shows that the experts in the 
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area of Critical Infrastructure Protection (CIP) have 

recognized a lot of problems inherent to the complexity of 

national and multinational infrastructures. As an attempt to 

address these problems a number of approaches exist for 

investigation the interdependencies by showing the critical 

infrastructures and the ways in which they depend on each 

other. However, there is no quantitative assessment of the 

degree to which these infrastructures depend upon each other. 

Moreover, there is no an exact mathematical model, which 

evaluates the changes to the economy that result from these 

interdependencies. 

Therefore, the above-mentioned considerations raise 

questions about the approaches for the infrastructure 

interdependencies. Analytical approaches study the problem 

based on over-simplified assumptions. This means the final 

results to be biased towards interdependencies under ideal 

conditions. The inaccuracy of analytical models focuses the 

expert attention on simulation to obtain correct results. 

 

III. DISTRIBUTED SIMULATION TECHNOLOGIES 

The design and execution of distributed simulations has 

become increasingly important for the analysis of complex 

systems. In recent years, the Department of Defense (DOD) 

has invested considerable resources in infrastructures for 

distributed simulation modeling. The main simulation 

technologies are based on Distributed Interactive Simulation 

(DIS) protocol, Aggregate Level Simulation Protocol (ALSP), 

and High Level Architecture (HLA) (see Fig. 3). While the 

fundamental structure of each is similar, there are differences 

that can impact an application developer or the administrator 

of a distributed simulation exercise. 

In 1983 the Defense Advanced Research Projects Agency 

(DARPA) sponsored the SIMNET (SIMulation NETworking) 

program to create a new technology to expand the current 

single task trainers into networked team trainers. SIMNET 

was tremendously successful, producing over 300 networked 

simulators. 

The first standard for interactive distributed simulation was 

IEEE 1278.1, also known as the Distributed Interactive 

Simulation (DIS) protocol. Although DIS was originally 

developed for military applications, the technology is well 

suited as a simulator interoperability standard for civil 

application areas.  

 
Fig. 3. Historical perspective. 

 

It was based on the use of standard formatted packets, 

designed for the data required by these specific applications. 

DIS allows geographically separated simulators to work 

together, interacting in real-time, to provide predictions just 

like a single integrated simulator. The technology also allows 

real entities to be included in the simulation loop. The 

foundation of DIS is a standard set of messages and rules, 

called Protocol Data Units (PDUs), used for sending and 

receiving information across a computer network. The most 

common message is the Entity State PDU which represents all 

of the state information about a simulated entity that another 

simulator needs to know. The fact that there is no central 

server is perhaps the most surprising DIS characteristic. DIS 

used broadcast architecture, in which all data is transmitted to 

all simulators where it can be rejected or accepted depending 

on the receivers’ needs. By eliminating a central server 

through which all messages pass, DIS dramatically reduces 

the time needed for a simulator to send important information 

to another simulator [11]. 

However, DIS has some drawbacks. Three features in the 

underlying data transport mechanism cause problems. Firstly, 

messages can get lost or arrive in the wrong order due to the 

use of the UDP/IP protocol. Secondly, the messages sent are 

part of standardised, fixed-sized Protocol Data Units (PDUs), 

although generic PDUs exist to communicate any type of data. 

Finally, due to the broadcast mechanism, the scaleability is 

rather limited. In the case that simulation experiments have to 

be repeatable, reliable data transfer is crucial [12]. 

Problems due to the inflexibility and lack of scalability of 

DIS approach have led to a different approach, the High Level 

Architecture (HLA), which becomes IEEE 1516 Standard. 

The HLA defines a set of rules governing how simulations, 

now referred to as federates, interact with one another. The 

federates communicate via a communication environment 

called the Runtime Infrastructure (RTI) and use an Object 

Model Template (OMT) which describes the format of the 

data. The HLA does not specify what constitutes an object, 

nor the rules of how objects interact. This is a key difference 

between DIS and the HLA. 

Besides facilitating interoperability between simulations, 

the HLA provides the federates a more flexible simulation 

framework. Unlike DIS where all simulations receive every 

piece of data broadcast, the HLA federates use data 

management mechanism based on publishing and subscribing. 

These facts make it possible to have more simulations on a 

network at one time because the amount of data being sent is 

reduced. The simulation software is also simplified because it 

does not need to process extraneous information. 

The Aggregate Level Simulation Protocol (ALSP) is a 

protocol and supporting software that enables simulations to 

interoperate with one another. Replaced by the HLA, it was 

used by the US military to link analytic and training 

simulations. 

The potential advantages of distributed simulation 

technologies are evident: increased flexibility, building on 

existing software and communications standards, 

maximisation of the use of existing simulation assets, and thus 

reduced costs. 

 

IV. HLA/RTI SIMULATION STANDARD 

The proposed architecture allows communication between 

simulation models based on High Level Architecture/Run 
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Time Infrastructure (HLA/RTI) standard for information 

exchange. HLA is the IEEE standard for software architecture 

of interoperable distributed simulations. It aims to establish a 

common high-level simulation architecture to facilitate the 

interoperability of all types of models and simulations among 

themselves, as well as to facilitate the reuse of modeling and 

simulation (M&S) components [13]. HLA allows experts to 

combine computer simulations into larger simulation. For 

instance, the experts might want to combine simulations of 

critical infrastructures in several different regions of the 

country. HLA can extend simulation later by adding new 

models or simulations, for example new models of 

infrastructures. 

HLA provides the technical framework of simulation 

development in order to guarantee interoperability and 

reusability, and common services that are applicable to all 

types of simulations. This simulation architecture is designed 

for rapid integration of simulation components from various 

sources. It is comprised of three elements [14]: 

 HLA Rules: A set of rules which must be followed to 

achieve proper interaction of simulations in a 

federation. These describe the responsibilities of 

simulations and of the runtime infrastructure in HLA 

federations. HLA rules describe the design goals and 

constraints for HLA compliant federations and 

federates. 

 Interface Specification: Definition of the interface 

functions between the Run Time Infrastructure (RTI) 

and the federates in the HLA simulations. 

Implementation of RTI have a variety of forms. There 

are currently RTI application programming interfaces 

in CORBA IDL, C++, and Java as part of the HLA.  

 Object Model Template: The prescribed common 

method for recording the information contained in the 

required HLA Object Model for each federation and 

simulation in terms of its objects and interactions. The 

OMT prescribes the allowed structure of FOM. 

The relationships of HLA components are shown in Fig. 4. 

The conceptual model includes simulators, data collectors, 

passive viewers, and live surrogates simulations. They have a 

single point of attachment to the RTI. The federate might be a 

surrogate for human interactions. In this role it can effects the 

states of the remaining federates in simulation [15], [16]. 

 
Fig. 4. HLA components. 

 

The framework of the HLA that consists of several 

functional components: 

Federate:  All applications participating in a federation are 

called federates. In reality, this may include simulation 

models, data collectors, simulators, autonomous agents, 

passive viewers, or live entity surrogates simulations. The 

federate is a member of a HLA Federation that can represent a 

single model of the critical infrastructure or entire national 

critical infrastructure. 

Federation: The combined simulation system created from 

set of federates that are interconnected with each other. 

Information exchange in the federation is based on a common 

object model, called Federation Object Model (FOM). It 

contains exchange data created by the federation developer 

that shows the relationships between federates. It means, 

FOM defines object classes, their attributes and interaction 

classes that are commonly used and exchanged among 

federates in the federation. The Simulation Object Model 

(SOM) is the model that defines objects, attributes and 

interactions in each federate that can be used from the other 

federates. 

Federation Execution: Simulation session, in which a 

number of Federates participate, is called a Federation 

Execution. All simulated entities, such as different 

infrastructure elements or threats, are referred to as objects.  

Run Time Infrastructure: RTI is a supporting software that 

provides information exchange mechanism between federates 

in the distributed environment regarding FOM. It implements 

a distributed operating system and forms the basic software 

layer for HLA applications. It does not maintain information 

about the state of the federates, nor does it handle any 

semantics associated with the interaction between federates 

like what coordinate systems to use or what happens during a 

collision. Also, it does not specify the exact byte layout of 

data sent across the network. RTI and federates are software 

components. An RTI may support different federation 

execution at once. 

RtiExec: RTIExec is a global process that controls the 

creation and destruction of the federation (simulation) in the 

network. Each federation is characterized by a single 

FedExec. 

FedExec: FedExec is a process that manages federates in 

the federation. It is responsible for creation, joining and 

destruction of the federates during the simulation execution. 

FedExec process is created by the first federate in the 

federation. 

LibRTI: LibRTI is a library that provides communication 

functions and services specified in the HLA/RTI standard [17] 

to federate developers. These RTI services are implemented 

in C++ or Java languages. The software specialists use 

LibRTI library to call the RTI services. A federate exchange 

information with the other federates, RtiExec, Fed Exec 

through LibRTI. 

The HLA object model supports information exchange 

between federates within the federation. The exchange of 

information takes the form of objects and interactions. 

Federates communicate with their peers by sending 

interactions or updating object attributes. Federates do not 

communicate directly with each other and all communication 

is administrated by the RTI. 
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Object classes are comprised of attributes. Object classes 

describe types of things that can persist. Each object in a 

moment of time is characterized by a state, which is defined 

by a set of current values of its attributes. Federate, which 

manages an object (more precisely, the object attributes), may 

alter the state of the object by changing the attribute values. 

Through RTI services, the federate transmits the new values 

of the object to all federates in the simulation. In this case it is 

assumed that the federate updates the attributes. 

Interactions classes [16] are comprised of parameters. An 

interaction is a single action caused by a change in the state of 

an object from another federation. Interaction classes describe 

types of events. Objects are similar to interactions in so much 

as objects are comprised of attributes and interactions are 

comprised of parameters. The basic difference between 

objects and interactions is persistence - objects persist, 

interactions do not. 

 
Fig. 5. Traditional HLA simulation. 

 

A traditional HLA federate (Fig. 5) can be presented as an 

integrated program, consisting of a simulation model and 

Local RTI Component (LRC). The simulation model is a 

physical, mathematical, or logical representation of processes 

and systems (user logic), whereas the LRC services it by 

interacting and synchronizing with other federates. Therefore, 

the simulation model performs local computing, while the 

LRC realizes information exchange for the model. It is very 

difficult to combine the above components in a normal 

federate, due to the tight coupling of the simulation model and 

the LRC [6]. 

In conclusion, the HLA FOM offers an object model that 

does not completely correspond to common definitions of 

object models in the object-oriented programming. The main 

purpose of the HLA FOM is to achieve interoperability 

between participants (federates) in the simulation, rather than 

between individual objects from different systems (federates). 

HLA doesn’t support the transference of objects and their 

behaviors between joined federates. 

Therefore, there are fundamental differences between 

object-oriented programming and HLA. A number of 

assumptions about how a federate wants to use HLA services 

must be made in order to support these services in an 

object-oriented API. From the other hand, it is also necessary 

to make a number of assumptions about the HLA interactions 

between federates in order to fully use object-oriented 

features such as method invocations [18]. 

V. OBJECT-ORIENTED HLA/RTI SIMULATION 

ARCHITECTURE 

This section shows sample code that implements the 

architecture for Object-Oriented (OO) HLA/RTI simulation. 

The reference model of HLA object is C + + class, which sets 

the standard for the construction of HLA objects. It provides 

performance requirements for joint and resign of HLA objects 

in a common simulation. The reference model implements the 

principal characteristic of the HLA simulations - modularity 

and expandability. 

The object-oriented concept [1] of the HLA architecture is 

based on a strict hierarchical organization of classes that 

satisfy the requirements for building complex distributed 

simulation systems based on HLA standard. Basic class 

hierarchy is a class StandAlone. It contains features that allow 

the HLA classes to be integrated into the simulation 

environment. StandAlone has virtual methods and data 

members that HLA objects must inherit to be able to 

participate in the information exchange. 

The remaining part of this point is a principle description of 

the reference model of an OO HLA object - data, methods and 

working principle. HLA_Model class specifies the structure 

of the OO HLA object. It inherits the class StandAlone, 

thereby receiving all features necessary for participation in 

the HLA simulation (Fig. 6). 

HLA_Model class contains two sections that are relevant to 

the HLA/RTI standard. The first section contains declarations 

of state variables. In the terminology of C ++ these variables 

are presented as a members-variables (data) to the class 

HLA_Model. The second section contains virtual functions 

inherited from the class StandAlone. These virtual functions 

must be implemented, as they are called sequentially in the 

simulation loop. Virtual functions meet the following basic 

steps defined by the HLA standard: 

 processing upon receipt of event (interaction); 

 calculation of state variables for each time step; 

 sending the new values for the HLA models through 

RTI. 

An example for building a simple OO HLA model of 

Hurricane is shown. It was developed following the 

specifications given into the reference model of a HLA object 

(HLA_Model). A disaster class (Fig. 7) is created initially, 

and then it inherits the base class StandAlone. It encapsulates 

common features of all disasters - speed, position, 

identification and etc. 

 

 

Fig. 6. C++ HLA_Model class. 
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In the class Disaster are not implemented virtual functions 

inherited from StandAlone because the simulation application 

never creates an object of class Disaster. This class is used 

only to be inherited by classes that are models of specific 

disaster such as a hurricane (see Fig. 8). 

 

 

Fig. 7. C++ Aircraft class. 

 

 
Fig. 8. C++ F16 class. 

 

An instance of HLA object class Hurricane is created by the 

constructor of the Class Hurricane. It initializes the state 

variables of the model and carries out registration of the 

object into the RTI. As a result, an object handle of the 

objectHandle is returned. It is a unique number that identifies 

the object instance into RTI. Object instance is a global 

representation maintained by the LRC. The same object 

instance is known to all federates by its globally unique 

handle value. 

Like any simulation, HLA simulation is moved by the main 

simulation loop. The functions of the main simulation loop 

are related to: time management (real time simulation, fast 

simulation, etc.), increasing the simulation time with a time 

step, calling the virtual functions of the StandAlone class. All 

work on the processing of the OO HLA objects is done by the 

simulation loop. It is continuously repeated during which the 

virtual function of all OO HLA simulation objects are 

executed and attributes are updated. The simulation loop (Fig. 

9) calls the virtual functions of the implemented HLA models 

because of polymorphism obtained by an inheritance 

StandAlone class. 

 

 
Fig. 9. Simulation loop. 

 

The state variables are recalculated on an each time step of 

the simulation time by the function update(). In the example, 

the HLA object Hurricane recalculates the new position of the 

disaster. The updated values of the state variables are sent to 

the RTI environment by SendUpdate() where all subscribing 

applications can get them. When an HLA update is received 

the corresponding mirror object is updated, enabling the 

application to receive the value whenever needed. 

 

VI. OOL COMMUNICATION MODEL 

The proposed architecture uses a publish-subscribe 

communication architecture that supports object-oriented 

updates to HLA object instances. The sequence diagrams (Fig. 

10 and Fig. 11) present two parts of the communication model. 

The figures show the interactions between the model 

components need to work together to accomplish a 

communication task. 

The publishing application (Fig. 10) creates a new HLA 

object for each information source (disaster, infrastructure 

objects, etc.). This object is stored in the static list of objects 

(standAloneList).  

As a result, there is no need to recreate a HLA object upon 

receiving information from the same source. Therefore, when 

you need to send updated data for the same information 

source the program looks for the HLA object that has already 

been created. Then the application sends data by calling the 

sendUpdate() of the HLA object, thus making the connection 

between OOL and RTI functions. 

 

 
Fig. 10. Publishing application. 
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Fig. 11. Subscribing application. 

 

In the subscribing mode (Fig. 11), the application accesses 

data by the function receiveUpdate(). It is a Callback function 

that has to be implemented by the programmer. The Callback 

function reads all data of a given HLA instance and searches 

in the list of HLA objects (standAloneList) if there is an 

object whose key matches this data. Once the application 

finds a relevant instance of the class the attribute values are 

updated. 

 

VII. A CASE STUDY: AN EXAMPLE OF INTEGRATED 

SIMULATION SYSTEM 

To verify the effectiveness of the new simulation 

technology, a case study was done on an integrated simulation 

of critical infrastructure interdependencies and their control 

mechanisms. The purpose of the integrated simulation is to 

observe how the critical infrastructure objects behave when 

unordinary events occur. The integrated simulation system is 

created from a set of models that are interconnected with each 

other. The proposed simulation system consists of several 

functional components [19]: 

Simulation models: All simulated entities, such as different 

infrastructure elements or threats, are referred to as simulation 

models. It includes models of infrastructure objects, data 

collectors, and disasters. The simulation models consist of 

C++ code that access communication services provided by 

the RTI communication environment. This mechanism allows 

communication between simulation models based on HLA 

standard through RTI infrastructure. The communication 

between infrastructure objects in the integrated simulation is 

based on a common object model. It contains exchange data 

created by the developer that shows the relationships between 

models. Therefore, the common object model defines object 

classes, their attributes and interaction classes that are 

commonly used and exchanged among models in the 

simulation. 

Viewer application: The viewer is developed to provide an 

integrated display environment (Fig. 12). It can act as a 

passive recipient and display simulation data from the rest of 

simulation system. The viewer is an important part of the 

simulation system because it provides analysis tools and 

playback capabilities. The viewer communicates with the 

simulation models over TCP/IP protocol that allows different 

models to reside on separate computers [5]. 

As a result of repeated execution of simulation, data is 

collected and analyzed, and the results are documented. The 

simulation results are presented in Table I. It display 

simulation time and state variables of the interdependent 

models exchanged through RTI environment. 

A row of the table represents the time series of a state 

variable. A column represents the set of the simulated 

variables. The state of the variables at time t depends only on 

the states before t. The simulation results can be used for an 

analysis and assessment of the cascading effects and 

improving critical infrastructure protection. 

 

VIII. CONCLUSIONS 

The proposed simulation architecture is based on a 

distributed framework that can be rapidly implemented with 

interoperability standards for the modeling and simulation. 

Together, the framework and interoperability standards can 

significantly increase the use of modeling and simulation for 

natural disaster management. In turn, it will help improve the 

emergency management capabilities. This approach provides 

a possibility of doing an assessment of the elements of the CI 

and their interdependencies affected by an emergency 

situation due to natural disasters (see Table II).  

 

 

 
TABLE II: SIMULATION RESULTS 

Space-time graph for disaster simulation   

Hurricane 

Latitude  43.2299 43.2269 43.0365 43.9603 42.7368 42.5868 

Longitude 23.3271 23.3336 23.7375 23.8540 24.2699 24.5196 

Speed [km/h] 190 190 220 220 220 220 

       

Power substation 

Latitude  43.0295 43.0295 43.0295 43.0295 43.0295 43.0295 

Longitude 24.0012 24.0012 24.0012 24.0012 24.0012 24.0012 

Damages [%] - - 15 30 35 35 

        

Residential area 

Latitude  42.7514 42.7514 42.7514 42.7514 42.7514 42.7514 

Longitude 24.6549 24.6549 24.6549 24.6549 24.6549 24.6549 

People in disaster 

area [%] 
- - - 2 23 58 

Electricity 

blackout [%] 
- - - 32 43 56 

Damaged 

buildings [%] 
- - - - 16 23 

Simulation time [sec] 300 310 880 1120 1750 2160 
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Fig. 12. Viewer application for hurricane simulation. 

 

The main concept relies on the idea of providing a 

structural methodology and tools for the use of the methods to 

design, develop, and implement the HLA system, and obtain 

the interoperation and reuse of the simulation models. The 

potential advantages of the proposed architecture are evident: 

increased flexibility, building on existing software and 

communications standards, and maximisation of the use of 

existing simulation models. 

With HLA/RTI simulation infrastructure 

interdependencies under natural disasters can be modeled 

with almost any level of detail desired and the design space 

can be explored more finely than is possible with 

analytical-based approaches or measurements. HLA 

simulation can combine different simulation models easily, 

and incorporate measured characteristics of infrastructure 

objects and their interdependencies. 
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