
  

 

Abstract—Public–private partnerships (PPP) have been 

widely used in delivering infrastructure projects as they 

mobilise social capital to participate in infrastructure 

construction. However, the long operational period of PPP 

projects draws high market risks, which deters investment in 

PPP projects. Government guarantees are frequently used as an 

investment incentive as they reduce the probabilities of suffering 

loss for social participants. Nevertheless, government 

guarantees cannot fully control the overly lucrative conditions 

for private investors, which is the reason that revenue cap 

agreements are designed as a supplement in PPP contracts. This 

research proposes a methodology that can be used to design the 

specific thresholds for triggering such combined agreements, i.e. 

government guarantee and revenue cap agreements. These 

government guarantee and revenue cap decision models adopt 

geometric Brownian motion modelling as a data analysis tool 

and the fair preferences in relation to the project profits held by 

the project parties as an indicator in finding the optimal value 

of combined agreements. In addition, based on the project 

parties’ capabilities to bear risk, a self-regulation process for the 

value of combined agreements is created to ensure the levels of 

risk borne by the project parties are within their acceptable 

ranges. The research outcome shows that the proposed 

methodology in this paper is effective and able to determine the 

optimal value of government guarantee and revenue cap 

agreements. 

 
Index Terms—Contract design, government guarantee, 

public–private partnership, real option, revenue cap. 

 

I. INTRODUCTION 

Over the past decades, public–private partnerships (PPP) 

have gained popularity in delivering public infrastructure. 

Daube et al. (2008) defined a PPP project as “a long-term 

contractual arrangement between the public and private 

sector to realize public infrastructure and services more cost 

effectively and efficiently than under conventional 

procurement”. Due to their strengt h in delivering 

infrastructure projects, governments have been introducing 

social capital through PPP agreements to alleviate financial 

pressure [1]. Project investors (referred to as ‘concessionaires’ 

in this paper) expect to gain profits by operating projects. 

However, the implementation of PPP projects is not without 

challenges over a long operational period. Market 

surroundings continue changing throughout project life 

cycles and critical decisions made during the pre-construction 

stage tend to neglect the influence of market uncertainties [2],  
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which may lead to ex-post renegotiation or even project 

failure. To cope with market uncertainties, concessionaires 

often request government support to share financial risks. 

Also, since a project with excessive market risk will find it 

difficult to attract social capital, government support plays the 

role of providing an incentive for concessionaires to 

participate in PPP projects [2]. Government guarantees are 

one of the most common forms of government support, and 

they define the minimum level of annual net income. If 

annual net income is lower than the pre-specified value of the 

government guarantee, the government will compensate for 

the deficit [3]. Nevertheless, large government guarantees can 

be a fiscal burden on the government and society [4], which 

is one reason that governments always try to ensure the 

granting guarantees are off the balance sheets according to 

local accounting standards. 

Accounting standards for PPP projects remain 

controversial. According to the International Financial 

Reporting Interpretation Committee 12, project firms’ 

balance sheets should include PPP assets and liabilities only 

if they control the assets [5]. The European PPP Expertise 

Centre (2010) claimed that if the value of a guarantee is more 

than 50% of the capital investment, then it should be counted 

in the balance sheet. The Australian Heads of Treasuries 

Accounting and Reporting Advisory Committee offered a 

different view, suggesting that PPP liabilities should be listed 

on the balance sheet of the party who bears the majority of 

risk [6]. Governments should decide which accounting 

standard to follow, normally the local one, to avoid suffering 

a fiscal burden.  

Another way to protect public participants from fiscal 

problems is to propose a revenue cap agreement that defines 

the upper limit of the annual net income for concessionaires 

[7]. The profitability of the project for concessionaires should 

be improved with a government guarantee and some of the 

financial risk is transferred from the concessionaires’ side to 

the public sector [8]. As governments then share more 

financial risk via government guarantee agreements, in return 

governments should have the right to share the excess profits 

[9]. Through this profit sharing machinism, overly lucrative 

conditions for concessionaires are expected to be regulated. 

In addition, when the net present value (NPV) of a project for 

concessionaires is higher than the NPV for governments, the 

income gap between these project parties can be controlled.  

Government guarantees and revenue caps are often 

evaluated separately and few research studies have integrated 

revenue caps with government guarantees to study their 

interaction [10]. Even though some studies have considered 

government guarantees and revenue caps as combined 

agreements, these studies mostly calculated the option value 
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of combined agreements without giving their specific levels 

[3], [11]. In order to overcome these above limitations, this 

study proposes a methodology to design the thresholds for 

triggering government guarantees and revenue caps for 

project parties. The aim in designing the government 

guarantee and revenue cap is to reach a balance between the 

project parties on project revenue and risk. However, when 

these two agreements work together, they counteract each 

other. It is expected that the higher the value of the 

government guarantee, the lower the value of the revenue cap 

as a response, to average the risk, which means that the values 

of the government guarantee and the revenue cap should be 

decided carefully with full consideration of the interaction 

between them. Thus, a self-regulation process is here 

established to adjust their values in order to control the 

project risk for both parties within an acceptable range. 

 

II. THEORETICAL BACKGROUND  

A. NPV Analysis for PPP Projects 

Project participants usually forecast the profitability of a 

potential project using NPV analysis. The first step of this 

approach is to clarify the cash inflows and outflows during the 

project life cycle. A typical project life cycle for a PPP project 

is shown in Fig. 1, where 𝑡0 is the commencement date of the 

project, 𝑡𝑐 indicates the instant of time when the construction 

stage starts, 𝑡𝑐𝑠  and 𝑡𝑐𝑒 are the instants of time when the 

concession period starts and ends, and 𝑛 is the lifetime of the 

project. 

 

 
Fig. 1. A typical PPP project life cycle. 

 

The cash inflow for a PPP project is the revenue received 

during the concession period for concessionaires or the post-

transfer stage for governments, and the cash outflow mainly 

includes the construction cost, and operation and 

maintenance cost. If the theory of transaction economics is 

taken into consideration, the transaction cost, which means 

the cost incurred during an economic exchange, in a PPP 

project has been shown to be a non-ignorable number [12]. 

Thus, for a PPP project, the NPV for concessionaires and 

governments can be expressed as: 

 

𝑁𝑃𝑉𝑐 = ∑ (𝑅𝑡 − 𝑂&𝑀𝑡) (1 + 𝑟)𝑡⁄

𝑡𝑐𝑒

𝑡=𝑡𝑐𝑠

− ∑ 𝐼𝑡 (1 + 𝑟)𝑡⁄

𝑡𝑐𝑒

𝑡=𝑡0

− ∑ 𝐶𝑡 (1 + 𝑟)𝑡⁄  

𝑡𝑐𝑠

𝑡=𝑡𝑐

  (1) 

 

𝑁𝑃𝑉𝑔 = ∑ (𝑅𝑡 − 𝑂&𝑀𝑡) (1 + 𝑟)𝑡⁄

𝑛

𝑡=𝑡𝑐𝑒

                                   (2) 

 

where 𝑁𝑃𝑉𝑐  indicates the net present value for 

concessionaires and 𝑁𝑃𝑉𝑔  indicates the net present value for 

governments after the project is transferred from the 

concessionaire to the government, while 𝑅𝑡  is the gross 

income from operating the project at year 𝑡 ,  𝑂&𝑀𝑡  is the 

operation and maintenance cost at year  𝑡 , 𝐶𝑡  is the yearly 

construction cost at year 𝑡, 𝐼𝑡 indicates the transaction costs 

for concessionaries and 𝑟 demonstrates the discount rate.  

The discount rate used for NPV analysis should reflect the 

embodied risks in the project [13]. The weighted average cost 

of capital and the capital asset pricing model are the most 

commonly used methods for identifying the discount rates for 

PPP projects. However, it has been shown that traditional 

NPV analysis cannot fully reflect the project risk even though 

discounting the cash flow with a risk-adjusted discount rate 

and a Monte Carlo simulation of uncertainty variables should 

be a good supplement [14]. Brealey et al. [15] stated that the 

risk-free discount rate should be used in a Monte Carlo 

simulation since market risks have already been taken into 

consideration through assigning the probability distribution 

of the uncertain variables. Another method in reflecting 

project risk is to value the uncertain variables via geometric 

Brownian motion simulation. This method is particularly 

popular in estimating traffic volume in road-related projects, 

such as highways, bridges and tunnels [16], [17]. Like a 

Monte Carlo simulation, the risk-free discount rate should be 

used in geometric Brownian motion simulation, otherwise the 

risks are counted twice.  

B. Real Option Application in PPP Projects 

The NPV method cannot adequately reflect the values of 

the uncertainties in a project, which may lead to a fatal 

investment decision [18]. Even though some project 

parameters can be measured in a stochastic way, the values of 

the flexibilities embodied in the project are still waiting to be 

uncovered in NPV analysis. Smit and Trigeorgis [19] argued 

that the values of a project consist of the NPV, the flexible 

value and the strategic value, among which the project 

flexibility can be valued using real options analysis. In the 

options market, an option owner can choose to sell (put option) 

or buy (call option) the underlying asset before (American 

option) or only on the exercise date (European option) with a 

pre-specified strike price [20]. With real options, unlike 

financial options, their underlying assets are tangible assets. 

Over the past decade, the real options theory has been 

extended to evaluating the option value of government 

guarantees [10] and revenue caps [21].  

Government guarantees are configured to help 

concessionaires to alleviate the market risk, especially when 

the project underperforms, and are also used as a method to 

attract private investors so the investment environment can 

become more positive [22]. Governments usually decide on a 

certain amount for the guarantee and write this into the 

contract. If the project revenue in a year is lower than the 

government guarantee, the government needs to provide 

compensation whose value equals the difference between the 

project’s annual net income and the pre-specified guarantee 

threshold. If the guarantee value is viewed as the strike price 

of the guarantee option, then the option value of the 

government guarantee can be measured. Since the guarantee 

option as a real option can be exercised multiple times over a 

project lifetime, the guarantee option is measured as a multiple 

European put option in this paper. A European put option 

gives buyers the right, but not the obligation, to sell their 

underlying assets at the strike price on the expiry date of the 

option (the end of each year in this research). In other words, 

a European put option can be exercised once the asset price is 

lower than the strike price at the end of each year. Under this 
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condition, the value of the put option is the difference between 

the market price and the strike price. In contrast, the put option 

will be worthless if the asset price is higher than the strike 

price.  

Governments share more market risk through government 

guarantee agreements, but in turn they usually regulate a 

revenue cap, which is a cap on the annual profit of the 

concessionaires, to avoid suffering a heavy fiscal burden. If 

the net cash inflow in a year is higher than the revenue cap, 

the government could receive excess profit. Following this 

logic, the option value of the revenue cap is measured as a 

multiple European call option, as it can be exercised multiple 

times before the project ends once the asset price (the annual 

net income) is higher than the strike price (the value of the 

revenue cap) at the end of each year. A European call option 

gives buyers the right, but not the obligation, to buy their 

underlying assets at the strike price on the expiry date of the 

option.  

 

III. METHODOLOGY 

In this section, the methodology for deciding the optimal 

value of government guarantees and revenue caps is proposed, 

and contains the following steps: first, the optimal option 

value of a government guarantee is decided based on the local 

accounting standard, as well as the fair preferences held by 

the project parties. Second, since a government guarantee is 

being measured as a multiple European put option whose 

value cannot be decided directly, the specific value of the 

government guarantee is calculated through the backward 

induction of a binomial tree (i.e. the calculation starts from 

the end node of the binomial tree and moves to the starting 

point). Third, the revenue cap is valued as a supplement of 

the government guarantee in order to control the income gap 

between project parties and avoid overly lucrative conditions 

for concessionaires. Finally, a self-regulation process is 

created to control the project risk within an acceptable range 

when the government guarantee and the revenue cap work 

under the same contract package. The overall methodology 

flow chart can be seen in Fig. 2.  

 

 
Fig. 2. Methodology flow chart. 

 

A. Optimal Guarantee Option Decision Model 

In order to calculate the value of a government guarantee 

using backward induction, the option value of the government 

guarantee needs to be decided first. According to the principle 

that concessionaires are willing to bid on a project when the 

profit to be gained from the project is higher than the expected 

minimum return on investment [23], the minimum option 

value of the government guarantee (𝐺𝐺𝑚𝑖𝑛) is decided by Eq. 

(3): 
 

𝐺𝐺𝑚𝑖𝑛 = 𝑅𝑂𝐼𝑚𝑖𝑛 − 𝑀(𝑁𝑃𝑉𝑐)                           (3) 

 

where 𝑁𝑃𝑉𝑐  is the number set involving all the values of 𝑁𝑃𝑉𝑐  

in m times geometric Brownian motion simulations. The mode 

of  𝑁𝑃𝑉𝑐 , which is indicated as 𝑀(𝑁𝑃𝑉𝑐) , is taken as the 

predicted value of NPV for concessionaires, since it is the 

most representative number in a non-normal distribution. 

𝑅𝑂𝐼𝑚𝑖𝑛 is the value of the minimum return on investment.    

Governments provide a guarantee but do not want to lose 

capital liquidity, which is the reason that governments 

endeavour to locate the guarantee off the balance sheet. To 

achieve this, based on the PPP accounting standard suggested 

by the Australian Heads of Treasuries Accounting and 

Reporting Advisory Committee, concessionaires must bear 

the majority of risk in the project. Hence, a government 

guarantee cannot be granted without an upper limit, otherwise 

most of the risk would be transferred to the government side.  

The maximum option value of a government guarantee 

should be the option value that minimises the difference in the 

risk borne by both parties while ensuring that the 

concessionaire holds most of the risk. Otherwise, an on-

balance sheet record will be incurred. In mathematical 

language, the maximum option value of a government 

guarantee (𝐺𝐺𝑚𝑎𝑥) is decided by: 

 

(𝑃𝑐 − 𝑃𝑔)|
𝐺𝐺′=𝐺𝐺𝑚𝑎𝑥

≤ (𝑃𝑐 − 𝑃𝑔)|
𝐺𝐺′≠𝐺𝐺𝑚𝑎𝑥

                  (4) 

      𝑠. 𝑡.  𝑃𝑐 − 𝑃𝑔 > 0  

 

where  𝑃𝑐 = 𝑃(𝐺𝐺′ < 𝑅𝑂𝐼𝑚𝑖𝑛 − 𝑁𝑃𝑉𝑐),   𝑃𝑔 = 𝑃(𝐺𝐺′ >

𝑁𝑃𝑉𝑔), 𝑃𝑐  and 𝑃𝑔 are the probabilities of suffering risk events 

in 𝑚  times geometric Brownian motion simulations for 

concessionaires and governments respectively, and 𝐺𝐺′ is the 

independent variable in the solving process. 

After deciding on the range of the option value of the 

government guarantee, the next step is to recognise the 

optimal option value of the government guarantee within the 

proposed interval. It can be learned from principal–agent 

theory that an excessive income gap between clients and 

agents is not conducive to the formation of a long-term 

partnership and the low-income party is prone to be ‘envious’ 

of the high-income earner, thereby affecting the normal 

operation of the incentive mechanism in partnership [24]. 

Thus, the methodology for deciding on the optimal option 

value of the government guarantee is proposed based on the 

fair preferences in relation to the project profits held by the 

project parties. The optimal option value of the government 

guarantee should be the one that minimises the income gap 

between the government and the concessionaire.  

If the NPV for concessionaires is higher than the NPV for 

governments, the optimal option value of the government 

Calculate the optimal option value of 

government guarantee based on the 

assumption of the absolute fair

Calculate the value of government 

guarantee via the backward induction of 

binomial tree

Are the value of 

combined agreements 

verified by project parties’ 

risk tolerances?

yes

Output the value of government 

guarantee and revenue cap

no

Calculate the value of revenue cap  based 

on project parties’ fair preferences and/or 

the principle of avoiding overly lucrative 

conditions for concessionaires

Adjust the option value of 

government guarantee by adding 

an offset
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guarantee equals zero because governments do not want to 

waste financial resources to provide an additional guarantee: 

 

𝑖𝑓 (𝑁𝑃𝑉𝑐)𝑙 ≥ (𝑁𝑃𝑉𝑔)𝑙 , (𝐺𝐺′)𝑙 = 0      𝑙 = 1 … 𝑚         (5) 

 

where 𝑙  indicates the sequence number of geometric 

Brownian motion simulations, (𝑁𝑃𝑉𝑐)𝑙  and (𝑁𝑃𝑉𝑔)𝑙  are the 

simulated values of NPV for concessionaires and governments 

respectively in the number 𝑙 sequence of 𝑚 times geometric 

Brownian motion simulations, and (𝐺𝐺′)𝑙 is the value of 𝐺𝐺′ 

in the number 𝑙  sequence of geometric Brownian motion 

simulations. The income gap cannot be controlled by the 

government guarantee in this case. 

If the NPV for concessionaires is lower than the NPV for 

governments, flexible revenues for governments and 

concessionaires, which are the sum of the value of the NPV 

and the option value, need to be balanced. The best case is that 

there is no income gap between the project parties; this is 

called ‘the absolute fair’. Mathematically, this can be 

indicated as: 

𝑖𝑓 (𝑁𝑃𝑉𝑐)𝑙 < (𝑁𝑃𝑉𝑔)𝑙 , |𝑁𝑃𝑉𝑔 − 𝐺𝐺′ − (𝑁𝑃𝑉𝑐 + 𝐺𝐺′)|
𝑙

= 𝑘𝑙 → 0       (6) 

where 𝑘𝑙 is a number indicating the income gap in the number 

𝑙 sequence of geometric Brownian motion simulations. 

Then the value of 𝐺𝐺′  at each simulation process can be 

obtained from: 

 

(𝐺𝐺′)𝑙 = lim
𝑘𝑙→0

[(𝑁𝑃𝑉𝑔)𝑙 − (𝑁𝑃𝑉𝑐)𝑙 ± 𝑘𝑙] 2⁄ ∈ 𝐺𝐺′           (7) 

 

where  𝐺𝐺′ is the number set involving all the values of 𝐺𝐺′ 

that can minimise the income gap at each sequence of m times 

geometric Brownian motion simulations.  

After obtaining all the option values of the government 

guarantee that can function to minimise the income gap 

between project parties, the optimal option value of the 

government guarantee can be decided following: 

 

𝐺𝐺𝑜𝑝𝑡 = 𝑀(𝑮𝑮′) × 𝑃(𝑁𝑃𝑉𝑐 < 𝑁𝑃𝑉𝑔)                     (8) 

           𝑠. 𝑡. 𝐺𝐺𝑜𝑝𝑡 ∈ [𝐺𝐺𝑚𝑖𝑛 , 𝐺𝐺𝑚𝑎𝑥]    

 

where 𝑀(𝐺𝐺′)  indicates the mode of the number set, 

𝐺𝐺′. The constraint indicates that the optimal option value of 

the government guarantee should be located between the 

maximum and minimum option values of the government 

guarantee, otherwise the optimal option value cannot be found. 

B. Government Guarantee Decision Model 

As the government guarantee is here viewed as a multiple 

European put option, the government guarantee value, which 

is the strike price of the government guarantee option, cannot 

be measured directly. Thus, an indirect method based on the 

binomial tree model and the logic of backward induction is 

proposed. 

The binomial tree model supposes that there are two 

directions for underlying assets to move: upward or downward. 

If the underlying assets move up, the assets’ value in the next 

stage should be the initial value multiplied by the quotient (u), 

otherwise multiplied by the quotient (d), and the probability of 

moving up is expressed as (p). Only when the binomial tree 

and geometric Brownian motion share the same mean and 

variance in each step interval does the binomial tree model 

approximate to geometric Brownian motion. According to this, 

Cox et al. [25] proposed equations for binomial tree 

quotients: 𝑢 = 𝑒𝜎√∆𝑡  , 𝑑 = 𝑒−𝜎√∆𝑡 , 𝑝 = (𝑒𝑟∆𝑡 − 𝑑) (𝑢 − 𝑑⁄ ), 

where  𝜎 is the volatility of the underlying assets, ∆𝑡 is the 

step interval and 𝑟 is the risk-free rate. Through the backward 

induction process, all the assets’ value and the corresponding 

value can be generated at each node of the binomial tree. 

 

 
Fig. 3. The option value of a government guarantee in a binomial tree. 

 

A four-year binomial tree, as shown in Fig. 3, is taken as an 

example to illustrate the process for setting the value of a 

government guarantee. Any branch below the government 

guarantee threshold will receive compensation from 

government. In a binomial tree, the option value of the 

government guarantee at the final stage is measured first and 

then the value is discounted back to the previous stage. What 

needs to be noted here is that the final stage for 

concessionaires should be the end of the concession period. 

Through repeating the discounting process, the value of the 

government guarantee, which is the only unknown variable in 

the process, can be obtained. The iterative discounting process 

for the government guarantee option exercised at the end of 

the fourth year, 𝐺𝐺𝑜𝑝𝑡(4), can be shown mathematically as: 

 

𝑓𝑑𝑑𝑢 = 𝑒−𝑟∆𝑡[𝑝 × 0 + (1 − 𝑝) × (𝐺𝐺 − 𝑁𝐶𝐼1)]                 (9) 

 

𝑓𝑑𝑑𝑑 = 𝑒−𝑟∆𝑡[𝑝 × (𝐺𝐺 − 𝑁𝐶𝐼1) + (1 − 𝑝) × (𝐺𝐺 − 𝑁𝐶𝐼2)]    (10) 

 

𝑓𝑑𝑑 = 𝑒−𝑟∆𝑡[𝑝 × 𝑓𝑑𝑑𝑢 + (1 − 𝑝) × 𝑓𝑑𝑑𝑑]                          (11) 

 

𝐺𝐺𝑜𝑝𝑡(4) = 𝑒−𝑟∆𝑡[𝑝 × 𝑓𝑢 + (1 − 𝑝) × 𝑓𝑑]                           (12) 

 

where 𝐺𝐺  is the value of the government guarantee, 𝑁𝐶𝐼 

indicates the net cash inflow and 𝑓 indicates the function of 

the option value, while 𝑟 is the risk-free rate and ∆𝑡 is the step 

interval in the binomial tree. 

By repeating this process for each year in the binomial tree, 

the value of the government guarantee, as an independent 

variable embodied in Eq. (13), can be calculated. 
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𝐺𝐺𝑜𝑝𝑡 = ∑ 𝐺𝐺𝑜𝑝𝑡(𝑗)

𝑡𝑐𝑒

𝑗=𝑡𝑐𝑠

                                           (13) 

 

where 𝐺𝐺𝑜𝑝𝑡  is the optimal option value of the government 

guarantee calculated from Eq. (8). 

C. Revenue Cap Decision Model 

It can be noted that the proposed government guarantee can 

only minimise the income gap under the circumstances where 

concessionaires earn less than governments without any 

agreement being provided. As a result, the revenue cap as a 

supplement to the government guarantee mechanism is needed 

to control the income gap within a reasonable range when 

concessionaires earn more. Also, the revenue cap can be used 

to prevent concessionaires from earning excess money. The 

following section designs a revenue cap according to each 

purpose and tries to find the optimal value of the revenue cap 

that can control the income gap and overly lucrative 

conditions for concessionaires at the same time. 

After taking the option value of the revenue cap into 

consideration, the income gap between the concessionaire and 

government is changed again and should be re-evaluated to 

meet their fair preferences. In order to revalue the income gap, 

the values of the NPV for concessionaires and governments 

with combined agreements need to be identified first. The 

government guarantee and the revenue cap work together, 

which forms the yearly revenue range for concessionaires. 

Namely, the annual net cash inflow for concessionaires must 

be located within this range. Therefore, the annual net cash 

inflow for concessionaires at sequence l geometric Brownian 

motion simulation (𝑁𝐶𝐼𝑡
𝑙) is indicated as: 

 

𝑁𝐶𝐼𝑡
𝑙 = {

𝑅𝐶1,    𝑁𝐶𝐼𝑡 ≥ 𝑅𝐶1 
  𝑁𝐶𝐼𝑡 ,    𝐺𝐺 < 𝑁𝐶𝐼𝑡 < 𝑅𝐶1

𝐺𝐺,    𝑁𝐶𝐼𝑡 ≤ 𝐺𝐺
           𝑙 = 1 … 𝑚    (14)  

 

where 𝑁𝐶𝐼𝑡 is an independent variable indicating the annual 

net cash inflow without boundaries defined by combined 

agreements and 𝑅𝐶1  is the value of the revenue cap designed 

to control the income gap. Since the value of the government 

guarantee has already been calculated, the value of the revenue 

cap can be decided directly without the need for the backward 

induction process on option value. 

Based on the derived annual net income, the value of the 

NPV for concessionaires with combined agreements at 

sequence l geometric Brownian motion simulation (𝑁𝑃𝑉𝑐
′)𝑙 is 

calculated through: 
 

(𝑁𝑃𝑉𝑐
′)𝑙 = ∑ 𝑁𝐶𝐼𝑡

𝑙 (1 + 𝑟)𝑡⁄

𝑡𝑐𝑒

𝑡=𝑡𝑐𝑠

                                  (15) 

 

Afterwards, the income gap at each simulation process 

(𝐼𝐺𝑙) is derived from: 
 

𝐼𝐺𝑙 = [(𝑁𝑃𝑉𝑐
′)𝑙 − (𝑁𝑃𝑉𝑔)𝑙] ∈ 𝐼𝐺                      (16) 

 

where 𝐼𝐺 is a number set, which stores all the value of the 

income gap in m times geometric Brownian motion 

simulations. 

In order to control the income gap, the designed value of 

𝑅𝐶1 should meet the prerequisite: 

 

𝑀(𝐼𝐺) ≤ 𝑚𝑖𝑛(𝐴𝐼𝐺𝑐 , 𝐴𝐼𝐺𝑔)                     (17) 

where 𝐴𝐼𝐺𝑐  and 𝐴𝐼𝐺𝑔  are the maximum acceptable income 

gaps for contractors and public sectors respectively. The 

prerequisite is designed based on the principle that the revenue 

cap should be capable of controlling the income gap within the 

acceptable ranges for both parties. 

All the values of the revenue cap that meet the conditions 

of Eq. (17) are stored in the number set, 𝑅𝐶1. In order to avoid 

damping down the concessionaires’ keenness to invest, the 

maximum value of 𝑅𝐶1 is chosen as the optimal value: 
 

𝑅𝐶𝑜𝑝𝑡1 = 𝑚𝑎𝑥(𝑅𝐶1)                               (18) 

 

where 𝑅𝐶𝑜𝑝𝑡1 is the optimal value of the revenue cap that can 

achieve the goal of controlling the income gap. 

The revenue cap can also function to prevent overly 

lucrative conditions for concessionaires. If governments 

realise that the actual profit earned in a year surpasses the 

revenue cap threshold, the governments can claim the excess 

part of the revenue from the concessionaires. Under this 

condition, the annual net cash inflow for concessionaires at 

sequence l geometric Brownian motion simulation is indicated 

as: 
 

𝑁𝐶𝐼𝑡
𝑙 = {

𝑅𝐶2,    𝑁𝐶𝐼𝑡 ≥ 𝑅𝐶2 
  𝑁𝐶𝐼𝑡 ,    𝐺𝐺 < 𝑁𝐶𝐼𝑡 < 𝑅𝐶2

𝐺𝐺,    𝑁𝐶𝐼𝑡 ≤ 𝐺𝐺
   𝑙 = 1 … 𝑚      (19) 

 

where 𝑅𝐶2  is the value of the revenue cap designed to prevent 

overly lucrative conditions for concessionaires. The value of 

the NPV for concessionaires with combined agreements can 

be calculated via Eq. (15). 

In order to prevent concessionaires from earning excess 

profits, the designed value of 𝑅𝐶2  should meet the 

prerequisite: 
 

𝑅𝑂𝐼𝑚𝑖𝑛 ≤ 𝑀(𝑁𝑃𝑉𝑐
′) ≤ 𝑅𝑂𝐼𝑚𝑎𝑥                           (20) 

 

where 𝑁𝑃𝑉𝑐
′  indicates the number set of 𝑁𝑃𝑉𝑐

′  in m times 

geometric Brownian motion simulations. The prerequisite 

illustrates that the profit for concessionaires should be less 

than the negotiated maximum return on investment signed off 

in the contract. 

The optimal value of the revenue cap that can prevent 

overly lucrative conditions for concessionaires (𝑅𝐶𝑜𝑝𝑡2) can 

be derived from: 
 

𝑅𝐶𝑜𝑝𝑡2 = max (𝑅𝐶2)                  (21) 

 

where 𝑅𝐶2 indicates the number set of 𝑅𝐶2 that meets Eq. (20) 

in 𝑚 times geometric Brownian motion simulations. 

Finally, the value of the revenue cap that can prevent overly 

lucrative conditions for concessionaires while controlling the 

income gap between project parties can be found from: 
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𝑅𝐶𝑜𝑝𝑡3 = 𝑚𝑎𝑥 (𝑅𝐶1 ∩ 𝑅𝐶2)                      (22) 

 

where, if the union of 𝑅𝐶1 and 𝑅𝐶2 returns to a null set, no 

suitable value of 𝑅𝐶𝑜𝑝𝑡3  can be found, which means that 

overly lucrative conditions for concessionaires and the income 

gap cannot be controlled at the same time. 

D. Self-adjustment on the Value of Combined Agreements 

A revenue cap agreement interacting with a government 

guarantee may change the prior probabilities of suffering risk 

events for both parties. Hence, it is necessary to evaluate the 

project risk with consideration of the agreement as a whole. 

The best case is that the probabilities of suffering risk events 

for both parties are still within their risk tolerance ranges. For 

concessionaires, the risk event is that the profit earned is less 

than the minimum investment return. For governments, they 

need to bear the risk of suffering loss in the post-transfer stage. 

If a government guarantee and revenue cap decided through 

decision models lead to a risk occurrence rate that is higher 

than the risk capacity for any one of the project parties, the 

combined agreements will not play a role in risk control. 

Under this condition, the option value of the government 

guarantee needs to be revalued by adding or subtracting an 

offset to meet the project parties’ risk tolerances, according 

to which the value of the revenue cap is revised. The new 

option value of the government guarantee can be found 

following: 
 

𝐺𝐺𝑛𝑒𝑤 = 𝐺𝐺𝑜𝑝𝑡 ± Δ𝐺𝐺                                        (23) 

             𝑠. 𝑡.  𝐺𝐺𝑛𝑒𝑤 ∈ [𝐺𝐺𝑚𝑖𝑛 , 𝐺𝐺𝑚𝑎𝑥] 

 

where Δ𝐺𝐺 is the value of the government guarantee offset. 

The constraint illustrates the principle that the revised option 

value of the government guarantee should be located between 

the 𝐺𝐺𝑚𝑖𝑛 and 𝐺𝐺𝑚𝑎𝑥 designed before. The revised value of 

the government guarantee is then calculated through the 

backward induction process of the binomial tree, following 

which the value of the revenue cap can be decided. Afterwards, 

the new government guarantee and revenue cap are verified 

again based on the project participants’ risk tolerances. It 

should be noted that, as the revised option value of the 

government guarantee gradually deviates from the optimal 

value, the government guarantee’s ability to control the 

income gap will decline with the increase in offset times. 

However, after stepping into the self-regulation process, 

project risk control should be the priority. 

To summarise, when considering a government guarantee 

together with a revenue cap, the situation becomes 

complicated. As shown in Fig. 2, they work together to form 

a loop that can be seen as a self-regulation process for their 

values. Their values may need to be revised many times until 

they meet the project participants’ risk requirements. The 

smaller the value of Δ𝐺𝐺 , the greater the accuracy of the 

outcome of the self-regulation process that will be achieved. 

 

IV. NUMERICAL EXAMPLE 

A. Project Parameters 

Before conducting the data analysis, the project parameters 

that are used in our designed models need to be clarified. Some 

of the project parameters show uncertainty, as they change 

with the trends of the market surroundings. These parameters 

are given based on the assumptions described below: the 

initial yearly traffic volume forecast for the project 

is 25,000 × 1.2 × 365 = 109,500,000. The volatility of the 

future traffic volume is 12.5%. The operational cost is 

assumed to be 0.8 Australian dollars per car before the full 

charge for the toll road. Afterwards, the annual operating cost 

is set at 30% of the annual toll revenue as a more accurate 

standard [26]. The maintenance cost is 4 billion Australian 

dollars in the initial year with a 3% annual growth rate. The 

expected traffic growth rate 2.9%. Since the decision models 

calculate the cash flows based on the random traffic volume, 

the discount rate used for calculating the project NPV is the 

risk-free rate (2.6%), which equals the 10-year yield of 

Australian bonds. The underlying asset value used for the real 

options calculation equals the NPV value for the first 

operational year, which is 3.6 × 107 Australian dollars. The 

geometric Brownian motion model assesses the risks for a 

road-related project through assuming that the movement of 

traffic volumes follows a Markov process, as indicated in Eq. 

(24): 
 

𝑇𝑡+∆𝑡 = 𝑇𝑡 × 𝑒(𝜇−𝜎2 2⁄ )∆𝑡+𝜎𝜀√Δ𝑡                     (24) 

 

where ∆𝑡 indicates the time interval, 𝜇 is the expected growth 

rate of the traffic volume during ∆𝑡, 𝜎 is the volatility of the 

uncertain variable during ∆𝑡, 𝑇𝑡 is the current volume of the 

uncertain variable and 𝜀  follows a standardised normal 

distribution, 𝜑(0,1). 

In addition to the uncertain parameters, the project itself has 

some inherent attributes: the construction period is 4 years and 

the project life is 60 years. The investment cost is 4.8 billion 

Australian dollars and it is assumed that there are no other 

transaction costs during the project life cycle. The minimum 

return rate on investment is 10% and the maximum return rate 

on investment allowed by governments is 20%. Both the 

contractor and public sector can tolerate a risk probability of 

less than 10% and it is assumed that they wish to control the 

income gap within 1 billion Australian dollars. Finally, based 

on the traffic volume in the initial year, the estimated annual 

net cash inflow should be around 3.0 × 107 Australian dollars 

in the operational stage. 

B. Government Guarantee Determination 

The trend of traffic volume has been widely viewed as a 

geometric Brownian motion. A 1000-times geometric 

Brownian motion simulation of traffic volume is generated to 

make the results of the data analysis more statistically 

significant and then the concessionaires’ NPV for each 

geometric Brownian motion path is calculated. As seen in Fig. 

4(a), the 1000-times NPV simulation for the concessionaires 

fluctuates mainly from 0.5 × 109  to 1.5 × 109  Australian 

dollars. However, it can also be observed that some of the 

simulated values of NPV are below the line indicating the 

value of the minimum return on investment for the 

concessionaires. In other words, the concessionaire suffer risk 

events at these excess-demand points.  

The government guarantee is configured to protect the 
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concessionaires from suffering financial risk. The number 

with the highest frequency in Fig. 4(b) is chosen as the value 

of the NPV for the concessionaire, which is  6.7 ×
108 Australian dollars. As the NPV for the concessionaire is 

already higher than the minimum return on investment, the 

minimum option value of the government guarantee is set at 

zero. On the other hand, to make the guarantee off the balance 

sheet, the concessionaire need to bear the majority of the risk 

according to the Australia accounting rules for PPP projects, 

and therefore there should be a guarantee option cap for 

governments to prevent them from taking too much risk. 

 

 

 

Fig. 4. (a) 1000-times NPVc simulation; (b) Frequency histogram of NPVc. 

 

 

Fig. 5. Government guarantee supply-demand diagram. 

 

To better illustrate how to determine the maximum option 

value of the government guarantee, Fig. 5 shows the option 

values of the government guarantees that the concessionaire 

need for each simulation process, which are indicated as black 

dots, and the corresponding option values of the government 

guarantees that governments can afford, which are indicated 

as hollow circles. If the designed maximum option value of 

the guarantee is higher than the affordable guarantees for 

governments in some simulation sequences, governments 

need to bear financial risk at these points. In contrast, if the 

designed maximum option value of the guarantee at some 

points is lower than the option value of the guarantees that 

concessionaires require, the concessionaire will suffer 

financial risk in these cases. Therefore, if the option value of 

the government guarantee as a constant is represented by a 

horizontal line in Fig. 5, the number of black dots above the 

line must be greater than the number of hollow circles below 

the line to make sure that concessionaires suffer more 
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financial risk than governments. If there is more than one 

value of 𝑅𝐺𝑚𝑎𝑥  that satisfies the condition, the one that 

minimises the probabilities of difference in suffering risk 

between the project parties is the best choice. Following this 

logic, the option value of 𝑅𝐺𝑚𝑎𝑥 is decided to be 3.3 × 107 

Australian dollars. 

The optimal option value of the government guarantee that 

minimises the income gap is 2.1 × 107 Australian dollars, 

according to which the value of the government guarantee is 

calculated using the binomial tree model. Through backward 

induction, the threshold for triggering the government 

guarantee is set at  2.5 × 107 Australian dollars. With the 

designed optimal government guarantee threshold, the 

probabilities of suffering risk events for concessionaires and 

governments are 0% and 3.3% respectively. Both percentages 

are under the risk acceptance cap (10%) of the project parties. 

However, the return rate on investment for concessionaires 

solely with a government guarantee is up to 244% and the 

income gap is 3.9 × 108  Australian dollars (i.e. the 

concessionaire earns more), which is much higher than the 

tolerance ranges. Thus, it is necessary to design the revenue 

cap to cope with the overly lucrative conditions for the 

concessionaire and the excessive income gap. 

C. Revenue Cap Determination and Self-adjustment 

Process 

As introduced in the research background, governments 

define overly lucrative conditions as a maximum revenue 

return rate on investment of more than 20%. Following the 

methodology of preventing overly lucrative conditions for 

concessionaires, it can be noted that even though the value of 

the revenue cap equals the value of the government guarantee, 

all of the simulated values of the NPV are still more than 20% 

of the initial investment, which means that the overly lucrative 

conditions for concessionaires are beyond control. As there is 

no revenue cap with the value of the maximum return rate on 

investment (20%) given in the proposed project, the risk 

probabilities are the same as before. However, with the 

increase in the value of the maximum return rate on 

 

 

 
   

 

  

  

  

  

  

  

  

  

 

If the revenue cap is designed to control the income gap 

between project parties within 1 billion Australian dollars, the 

value of the revenue cap rises to 1.3 × 108 Australian dollars. 

In order to verify the self-regulation process, the probabilities 

of suffering risk events with combined agreements are 

calculated, which are 0% and 2.8% for concessionaires and 

governments respectively. The thresholds of combined 

agreements are verified, as the project risks for both parties are 

within 10%.  

To summarise, overly lucrative conditions for the 

concessionaire cannot be avoided unless the government 

allows a maximum return rate on investment that is higher 

than 30%. The value of the revenue cap which can control the 

overly lucrative conditions and the income gap at the same 

time for this project cannot be found. Nevertheless, when the 

value of the revenue cap is set at 1.3 × 108 Australian dollars, 

at least the income gap between the project participants is 

under control.  

 

V. CONCLUSION 

For a PPP project, governments design the value of the 

government guarantee to alleviate the inherent financial risks 

in the project, which encourages social capital to invest. In this 

research, a model for deciding the optimal value of 

government guarantees has been proposed. First, the 

determination of the lower limit of the government guarantee 

is based on the principle that the money earned by 

concessionaires should be at least higher than the minimum 

return on investment that they require. Second, considering 

that governments are not willing to bear high fiscal risks, the 

Australian PPP accounting standard is borrowed to make the 

granting guarantee off the balance sheet, based on which the 

upper limit of the government guarantee is decided. Finally, 

fair revenue allocation, which means minimising the income 

gap between the two parties in a PPP project, is the principle 

used to calculate the optimal value of the government 

guarantee. However, the government guarantee can only 

minimise the income gap under the circumstances that 

concessionaires earn less than governments without a 

government guarantee provided. In addition, governments 

cannot control overly lucrative conditions for concessionaires 

solely via government guarantees. Thus, governments design 

a revenue cap agreement that helps both to achieve fair 

revenue allocation and to minimise the income gap.  

The proposed model is verified by a numerical example. 

Following the proposed determination process, the 

government guarantee threshold can be generated, according 

to which the value of the revenue cap is decided to control a 

large income gap and overly lucrative conditions for 

concessionaires respectively. The analysis outcome shows 

that with only a government guarantee, the risks for both 

parties can be controlled, but the issues of overly lucrative 

conditions for concessionaires and a large income gap still 

exist. After introducing a revenue cap, the income gap can be 

controlled within an acceptable range, but overly lucrative 

conditions for concessionaires still cannot be avoided unless 

the maximum return rate on investment allowed by 

governments is increased to over 30%. The research outcome 

also shows that overly lucrative conditions for concessionaires 

and an income gap cannot be handled simultaneously for this 

project. Finally, it should be noted that a government 

guarantee working with a revenue cap can change the 

probabilities of suffering risk for project participants, so a self-

regulation process is designed to verify whether risk events are 

investment, as shown in Table I, the value of the revenue cap 

starts to grow and shows an increasing trend from 2.6 × 107

Australian dollars. The outcome tells governments that they 

cannot prevent concessionaires from earning excess money 

unless the maximum return on investment allowed by 

governments is increased to over 30%.

TABLE I: CHANGE OF REVENUE CAP (RC) WITH MAXIMUM RETURN RATE 

ON INVESTMENT (𝑅𝑂𝐼𝑚𝑎𝑥)

𝑅𝑂𝐼𝑚𝑎𝑥 RC (million AUD)

20% Unable to decide

30% 26.0

40% 27.9

50% 29.9

60% 31.9

70% 34.0

80% 36.1
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still under control. The designed values of combined 

agreements are verified through the self-adjustment process, 

but if they fail to pass the self-adjustment process, the option 

value of the government guarantee needs to be reconsidered 

by adding or subtracting an offset.  
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