

International Journal of Innovation, Management and Technology, Vol. 10, No. 6, December 2019

229doi: 10.18178/ijimt.2019.10.6.865

Abstract—Nowadays the Internet plays a significant role in

our day-to-day life. An abundance of information is uploaded

every second. The excess of information creates barriers to

Internet users' ability to focus on their own interests. Therefore,

numerous recommendation frameworks have been

implemented to predict and provide suggestions to help users

find their preferred items. However, it is difficult to find the

most appropriate recommendation strategy(s), one that works

best for the above issue. In this paper, we present a

benchmarking experiment that is made by different

recommendation algorithms on the MovieTweetings latest

dataset and the MovieLens 1M dataset. The assessment focuses

on four distinct categories of recommendation evaluation

metrics in the Apache Mahout library. To make sure that we

can control the benchmarking procedure efficiently and

correctly, we also used the RiVaL toolkit as an evaluation tool.

Our study shows that it is difficult to say which recommender

algorithm provides the best recommendation and unfiltered

datasets should be avoided in similar evaluations.

Index Terms—Recommender systems, benchmarking

recommender systems, recommendation frameworks,

MovieTweetings and MovieLens datasets.

I. INTRODUCTION

It is apparent that the volume of Internet users has been

increasing sharply in past decades. There is a tremendous

amount of different information be generated on the Internet

every second. Internet users require using recommender

systems to help them filter through various dataset sections

such as hotels, music, films, travel destinations and so on.

The main purpose of the recommender system is to discover

the most correct, useful and surprising items from a set of

selections that best match the interests of an end user [1].

With appropriate recommender algorithms, it is possible to

demonstrate a personalized ranking model and promote

customer loyalty.

Many website owners are starting to focus on analyzing

the performance of recommender systems [2]. However, it

was difficult to benchmark existing recommender strategies

and algorithms. There are three major constraints: The first

issue is related to the dataset selection; there exist different

barriers including data sparsity, rating density and other

biases of datasets. The second problem of evaluation is that

there are numerous of different metrics that aim to evaluate

various aspects of a recommender algorithm, it is hard to

analyze the correct result without an explicit evaluation goal.

Finally, many researchers realized that the measurement of

Manuscript received July 7, 2019; revised November 12, 2019.

Ruipeng Li and Luiz Fernando Capretz are with Western University in

Canada (e-mail: zack.liruipend@gmail.com, lcapretz@uwo.ca). Dr. L. F.
Capretz is on leave and is currently a visiting professor of computer science

at New York University in Abu Dhabi/UAE.

accuracy is not enough to tell the performance of a

recommender system, other relevant aspects also need to be

measured in the evaluation process [3].

The purpose of this experiment is to figure out what is the

best algorithm(s) that best matches users’ interests about

movies nowadays. In this paper, we will show an offline

evaluation of predictions that are made by different

collaborative filtering algorithms on the MovieTweetings

latest dataset (on August 7th, 2017) and MovieLens dataset

series (100k and 1M). The evaluation focuses on calculating

four distinct categories of recommendation evaluation

metrics (accuracy, decision support metrics, rank-aware top n

and recommendation quality) in the Apache Mahout

framework. We used the RiVaL toolkit as the evaluation tool

to ensure that we can control the benchmarking procedure

effectively and correctly. The rest of the report is organized

as follows: First, we will provide a brief introduction of

collaborative filtering recommender system in Section II. In

Section III, we talk about evaluation components in detail.

We elaborate on limitations and benefits of using existing

datasets and the reason of dataset selection. We also discuss

the evaluation toolkit and cross-validation in detail, as well as

five evaluation metric categories and their advantages and

disadvantages. Section IV demonstrates the evaluation setup.

Section V discusses the evaluation result, as well as

analyzation and comparison with different dataset. In section

VI, we explain three problems that we encountered during the

experiment. The last section talks about future works and

conclusions.

II. PROCEDURE FOR PAPER SUBMISSION

The collaborative filtering recommender system would be

one of the most successful and prevalent recommendation

techniques in the world. The key idea of this approach is to

assume that if there exist two users and they are similar in

mind, they probably will like same items. The collaborative

filtering technique then collects direct or indirect feedback,

where direct feedback means item ratings and indirect

feedback refers to the user clicking a link or searching a

keyword [4].

The collaborative filtering recommender system can be

divided into two broad categories: the memory-based and

model-based methods [5]. The memory-based technique

recommends items for a user by analyzing the ratings from

other neighbor users. The most famous algorithm in the

memory-based method is called nearest-neighbor

collaborative filtering, and there are two main approaches:

user-based and item-based, where the user-based approach

calculates the prediction based on a group of

nearest-neighbor users. Similarly, the item-based

collaborative filtering method filters items from a subset of

Assessing the Performance of Recommender Systems with

MovieTweetings and MovieLens Datasets

Ruipeng Li and Luiz Fernando Capretz

mailto:zack.liruipend@gmail.com
mailto:lcapretz@uwo.ca

nearest-neighbor items. Because the number of items would

not be likely to grow sharply, the item-based collaborative

filtering method can be calculated offline [6]. Moreover, the

model-based technique generates prediction by constructing

a probabilistic model; it collects a particular user's rating

information and analyzes it in statistical models. One of the

most popular algorithms of the model-based

recommendation system is matrix factorization [7]. The

singular value decomposition (SVD) technique is one of the

matrix factorization techniques; it reduces the number of

dataset features by lowering its space dimensions from N to

K, where K is less than N [8].

A. Notation and Description

We used consistent mathematical notations for referencing

various aspects of the recommender system model in this

experiment. It is common to have a set U of users and a set I

of items. The lowercase u and u' represent a specific user and

a group of users in a user set, and the lowercase i and i'

account for a particular item and a group of items in an item

set. Ru is the set of items rated/liked or brought by the user u,

and Au is the group of users who has rated/liked or brought

the item i. Li is a collection of items remaining in the itemset.

Nu is a set of nearest-neighbor users, and Ni is a set of

nearest-neighbor items selected by the recommendation

algorithm. Finally, Tn represents a list of items generated by

the recommender algorithm. Table I shows the relationship of

all notations.

TABLE I: COLLABORATIVE FILTERING NOTATION AND EXPLANATION

B. Final Stage Collaborative Filtering Algorithms

The user-based recommender provides predictions by

finding the most similar set of users. The typical prediction

process of this approach [5] used two standards to select Nu.

The first rule is selected users must be in the Au group, and

the second rule is selected users must share similar

characteristics with the user u. If there is no such user in the

Au group, the algorithm will predict the rating for a set of

users in u recursively by finding the Nu of those selected

users then adding those predicted ratings into the prediction

process for the active user u. The algorithm that we used in

the user-based recommendation is called generic user-based

recommender. This algorithm calculates the similarity

between u and i using different similarity metrics.

Sometimes [9] the information of an active user u is not

available or irrelevant because the user u changed his/her

short-term interest. Therefore, item-based algorithms have

been developed. the item-based recommender generates

predictions by detecting the most similar group of items. If

items in the Li are highly similar to Ru, then those items in

the Li will become part of Ni. To determine Tn, the algorithm

first calculates the similarity between the item i and other

items in the Li. The algorithm also checks the value of Ru and

then computes a weight rating to each item in the Tn. Finally,

the item-based recommender creates a similarity index for

each item. The advantages of this algorithm are that the

recommender may reduce the cost of calculation and

maintain the recommendation quality. The opposite part is

that the algorithm must calculate the similarity for every item

in the itemset; thus, the calculation might take longer.

We selected GenericItemBased and GenericUserBased

with five similarity classes (Pearson's Correlation,

Uncentered Cosine Similarity, Spearman Rank, Euclidean

Distance and Tanimoto Coefficient) in the Apache Mahout

library [10].

Model-based recommender system commonly uses matrix

factorization to generate predictions [2]. Matrix factorization

methods characterize both items and users as vectors by

deducting rating patterns; it provides recommendations based

on the high parallelism between item and user factors. SVD

recommenders are distinct by factorization types. In our

experiment, we used three types of factorization: FunkSVD

[11], RatingSGD, and SVD++ [7]. The FunkSVD is an

incremental SVD algorithm that uses gradient descent to

shorten the processing time. The algorithm iterates overall

ratings in the training set and predicts the Ru, and then

calculates all prediction errors. Rating SGD includes user and

item biases. It can be training data faster. It is an optimized

version of gradient descent. On the other hand, the SVD++

method was implemented based on SGD matrix factorization.

The SVD++ method combines the latent factor model and

neighborhood-based model. The algorithm not only focuses

on how users rate, but it also considers "who has rated what."

As a result, the accuracy has been increased.

C. Identified Issues

Memory-based methods have three identified issues:

sparsity, scalability, and the cold-start problem [1]. The

sparsity problem talks about shortages in a dataset. Typically,

a user cannot provide too many ratings and can only lay over

part of the item. As a result, the recommender algorithm may

output a fewer number of items. One possible way to solve

the high sparsity issue is to use model-based recommendation

methods. Moreover, if the number of users and items

increases sharply, then the time and resources that are

required to run those algorithms also rises gradually. This is

referred to as the scalability issue. One optimized solution for

the scalability issue is to implement distributed processing

methods that reduce the processing time for mapping.

The cold start problem is the most prevalent issue for

memory-based methods; it appears when the recommender

system is not able to collect sufficient information to provide

trustable recommendations. Bobadilla et al. [12] declared

three types of cold start problems: new community, new item,

and new user. The new community code start means it is

Notation Explanation

U Userset

I Itemset

u, us Users in the userset. us(u)∈ U

i, is Items in the Itemset. is(i)∈ I

Ru Items that the user u liked/rated. Ru ⊆ I

Rui User ’s rating of item i

Au Users who also likes item i. Au ⊆ U

Li Items left in the itemset. Lu ⊆ I

Nu/Ni Selected neighborhood user-set/itemset
for the user u.

1.Nu ⊆ Au

2.Ni ∩ Li = ∅

Tn The top-n recommendation made by the

algorithm.

1. Tn ⊆ Li

2. Tn ∩ Ru = ∅

International Journal of Innovation, Management and Technology, Vol. 10, No. 6, December 2019

230

impossible to start the recommendation due to lack of

information. The new item has less impact of the system. It

refers to new items that just added into system that do not

have enough ratings. The new item cold start problem can be

solved by creating a group of active users to rate each new

item in the database mandatorily. Lastly, the new user issue is

the one of the most critical problems [13]. A new user does

not provide any ratings. Thus, it is impossible to obtain any

personalized recommendations. A common solution to the

new user cold start problem is to let new users submit

additional information during registration.

A dataset is a collection of user ratings, and it contains

several components. There are a lot of identified issues, and

they involve in different areas. Some of them are caused by

limitations of recommendation methods. Some of the biases

are related to the data itself; these includes synonymy, gray

sheep, and shilling attacks [14]. Synonymy refers to an item

having multiple names. Most of the recommenders cannot

distinguish the difference between names and count them as

different items. Thus, the recommendation quality is

decreased. Gray Sheep pertains to a group of users who

cannot take advantage of the recommender system because

they have inconsistent points of view. Shilling attacks have a

bearing on the reliability of data. Any user who can access the

Internet can create a rating for a product. In some cases,

product stakeholders generate an adequate number of

positive recommendations for their goods and give negative

ratings to their business adversaries. In other words, these

people provide counterfeit data to the database. Data

synonymy and shilling attacks have a significant impact on

the reliability and quality of recommendation, while gray

sheep users are undesired.

III. REVALUATION DESIGN AND RELATED WORKS

Recommender systems are designed with different

strategies. However, they bring two problems: the first one is

unapparent evaluation goals and tasks. Many studies

evaluated incorrect or insufficient data because different

strategies have different purposes and missions. To avoid this

issue, the evaluation goal and tasks must be identified clearly

at the beginning. In our experiment, we defined and validated

evaluation objectives in the initial and planning stages.

Moreover, the resulting comparison is that various libraries

become an issue because the values of the metrics are usually

different even when they use the same method. A minor

difference in the method of developing algorithm and data

organization may cause a notable change in results. Our

solution is to use the RiVaL toolkit [14], a tool that can

perform a cross-platform evaluation. Therefore, we can

compare results generated by different frameworks

effectively.

A. Goal and Tasks

The evaluation goal can differ because recommender

systems can be designed in different ways and with different

algorithms. Even though we already have a good algorithm,

we should improve its performance. First, it is essential to

understand what should be optimized. This is the core of

evaluation, as it is difficult to evaluate a recommendation

system without a clear goal. Many researchers point out that

the measurement of the difference between the prediction and

actual ratings is not adequate. Harper and Konstan [15]

claims that a set of different evaluation metrics has been

introduced to analyze the performance of recommender

systems. This includes the usefulness of the algorithm, the

correctness of top-ranked items, and the analyzation of the

lack of coverage. Our evaluation goal is to identify which

recommender system is better for movie website owners. We

focused on accuracy, decision support metrics, rank-aware

metrics, and quality.

Herlocker et al. [8] argued that the first step of the

evaluation process is to understand user tasks that the system

must achieve. In our point of view, finding some good items

and finding credible recommenders are two important user

tasks that best fit our evaluation goals. The term "find some

good items" determines how good the recommender system

is. Many recommender algorithms try to achieve accuracy by

predicting how a specific user would like the list of items and

rank them. The above process is indispensable, but it is not

enough to identify the best recommender system(s). However,

in some situations, customers want to overlook all the

existing recommendations, so they spend a lot of time

researching the recommendations and filtering the

recommendations they think are useless [8].

Therefore, it is essential to premeditate coverage in the

evaluation process. Furthermore, "finding credible

recommenders" is another valuable task that must be

complete. Many customers, in particular users who want to

find useful and interesting music and movies, are not likely to

accept a recommender automatically. Some users tend to

change their account settings to investigate how the

recommendation set changes. If the recommender system

cannot provide items that are already known by and are

guaranteed to satisfy users (i.e., very famous songs or

movies), those users will withdraw from the service and seek

other valuable recommender systems. The above situation is

unacceptable for website owners. Therefore, it is desirable to

analyze decision support metrics and rank-aware metrics

such as Mean Average Precision (MAP), Precision@N, and

nDCG@N.

B. Cross-Validation

The fundamental process of evaluation involves using

existing data to simulate user behavior and check if a

recommender method can predict the behavior successfully.

Cross-validation is one such desired simulation method [15].

In a single fold cross-validation simulation, the selected

datasets have been divided into two sections, a training

dataset and a test dataset, which have different functions. On

the one hand, the recommender algorithm interacts with the

training data set, and the algorithm treats the training data as

input and uses this data set to generate a list of

recommendations and predictions. On the other hand, the test

data has been concealed, and the recommender algorithm

cannot touch it. It is noteworthy that the materials in the test

data will never change. Then we compare the

recommendations and predictions from the training data with

the test data and calculate the divergence between them. In

the last step, we use these calculations as inputs to generate

various metrics. In the above process, we treat the training

data as preferences or past behaviors that already exist in the

International Journal of Innovation, Management and Technology, Vol. 10, No. 6, December 2019

231

database. Similarly, we look at the test dataset as ratings that

users are likely to give after they receive recommendations

made by the recommender system. That is the simulated user

behavior.

A potential issue with single fold cross-simulation is the

recommender algorithm might evaluate a group of the easiest

or hardest users. Thus, the accuracy might decrease. To avoid

this issue, we used five-fold cross-validation, which

separates data into multiple splits [9]. Each split has a

training dataset and test dataset. For each partition, we

perform a single fold cross-validation. Lastly, we average

the value of the metrics. This way, the possibility of picking

the hardest or easiest users will become extremely small.has

rated what." As a result, the accuracy has been increased.

C. Datasets

Datasets would be one of the most important parts of the

evaluation. We found several existing datasets and

discovered that many of them are outdated and no longer

available, including CAMRa (2012), Netflix (2007), and

EachMovie (2004). Furthermore, we researched about Jester,

which is a set of rated online jokes [17], as well as the

Book-Crossing Dataset [18]. The above two datasets are in

divergent domains and not related with evaluation goals.

MovieTweetings datasets. The original dataset was

integrated from the IMDb website and has a rating scale from

one to ten. It has many advantages. First, the dataset always

includes the most recently added users and movies; second,

the dataset uses similar formats and data structure. It is

possible to perform a reproducible evaluation with other

datasets. Lastly, it reduced the synonymy issue and lowered

the possibility of shining attacks because of the way they

collect data. One drawback is the sparsity problem; it is

difficult for recommender systems to generate predictions for

those people with few ratings. Another disadvantage is the

age distribution of Twitter user's. According to Statistics, the

age distribution of Twitter users in the United States was

more than 60% between 18 to 44 years of age in 2016.

Therefore, the MovieTweetings dataset may not contain too

much data uploaded by the 45+ age group.

MovieLens Datasets. There are several versions of

MovieLens datasets [9]. We observed two datasets that

similar with the MovieTweetings latest dataset. The first one

is MovieLens Latest Datasets, which contains twenty-six

million ratings. The second one is MovieLens 1M datasets. In

addition, we also found MovieLens 100k, which is the most

popular dataset that has already been analyzed in many types

of research and studies. We finally selected MovieLens 1M

and 100k datasets. The first reason is the limitation of time,

and the second reason is that MovieTweetings and

MovieLens 1M datasets have close ratings. Therefore, it is

convincing to make comparisons. Moreover, the evaluation

result of the MovieLens 100k dataset is publicly available.

We can compare them with the result generated in our

experiment.

Table II demonstrates basic numerical information about

selected datasets. The MovieTweetings dataset has the

largest volume of users and movies but the least density, and

vice versa for MovieLens 100k. In addition, MovieLens 1M

datasets have the most ratings, and its density is ten times

higher than the MovieTweetings dataset. There is no users

and movies had been filtered in the MovieTweetings latest

dataset [16], while the MovieLens dataset series only

included users with more than twenty ratings. Although we

selected different datasets, the density problem remains in the

latest dataset.

TABLE II: DATASET INFORMATION

D. Evaluation Tool

The RiVaL toolkit is a cross-framework and open-source

evaluation project implemented in Java. It allows

experimenters to control the entire evaluation process with a

transparent evaluation setting [14]. It divides the

benchmarking process into four stages: data splitting, item

recommendation, candidate item generation, and

performance measurement. In our experiment, the item

recommendation was performed by Apache Mahout and

other phases were performed in RiVaL. The Apache Mahout

framework uses the training and test file generated by

cross-validation to create recommendation list and use it as

input in candidate item generation stage. Therefore, in our

case, stage one, three, and four were executed in the RiVaL

toolkit.

IV. EVALUATION SETUP

Evaluation for MovieLens datasets (1M and 100K) are

conducted on a Machenike laptop, which has a

seventh-generation Intel Core i7-6700HQ processor @

2.6GHz, 16GB DDR4, 2400MHz RAM, and NVIDIA

GeForce GTX 1060 graphics card with 6GB video memory

under the Windows operating system. Evaluation for

MovieTweetings latest dataset is conducted on a desktop,

which has a seventh-generation Intel Core i7-6700 processor

@ 3.6GHz, 16GB DDR4, 2400MHz RAM, and NVIDIA

GeForce GTX 1060 graphics card with 3GB video memory

under the Windows operating system.

The actual process can be divided into seven steps. We

apply different settings in our evaluation algorithm at the first

phase. For instance, we set the cutoff to be 10, 20, and 50, and

the neighborhood size is set to be 50, 100, and 200 in

user-based and item-based recommender algorithms while in

SVD recommenders, the value of the cutoff and

neighborhood size are constant at 20 and 100. The variable of

SVD recommenders is the number of interaction levels which

is set to be 10, 20, and 50, respectively.

Second, a selected dataset (MovieTweetings and

MovieLens) is downloaded and stored on the local drive. In

the third phase, we perform the five-fold cross-validation. In

the fourth and fifth steps, recommended items are generated

by algorithms in the Apache Mahout, and candidate movies

are generated. In the sixth stage, we use data generated in the

fourth step as input to create five different evaluation results.

In the final step, we store the evaluated result on Google drive

for later data analyzation. We have also implemented a timer

Dataset Users Ratings Movies Density Latest
rating

MT 50298 632225 28721 0.044% Aug

07,2017
ML 1M 6000 1 M 4000 0.537% Feb,2003

ML

100K

943 100000 1682 6.305% Apr,1998

International Journal of Innovation, Management and Technology, Vol. 10, No. 6, December 2019

232

to calculate the execution time from step four to six because

this is the actual evaluation processing time.

V. RESULTS AND DISCUSSIONS

In general, the total execution time for the

MovieTweetings latest dataset is 1379155 seconds (about

383.09 hours). The evaluation time for MovieLens 1M is

1539738 seconds (about 427.7 hours). Furthermore, the total

running time for MovieLens 100k is 30927 seconds

(approximately 8.590 hours). According to the results, we

observed that as the size of the dataset increased numerically,

the algorithm execution time will increase exponentially.

Moreover, the Item-based recommender has the highest

running time, while the overall user-based recommender has

the lowest time among all three datasets.

We discovered that several parameters can influence the

performance of memory-based recommender algorithms.

The first variable is the value of cutoff. Table III shows mean

results and its relationship with the number of cutoff in each

dataset. We also discovered that a change in the cutoff would

only affect decision-support and rank-aware metrics; when

the value of the cutoff rises, the amount of P@N and

nDCG@N also increase. Another interesting point related to

the cutoff is that it has a significant effect on the item-based

recommender algorithm.

We noticed that the performance of nDCG@N and P@N

increased sharply when the number of cutoffs increases.

Furthermore, from the results, we can determine that values

of MAE, RMSE, and MAP did not change when we set the

cutoff from 10 to 50 and let the neighborhood size remain at

100. Therefore, the value of the cutoff cannot affect the value

of accuracy metrics when the neighborhood size is constant.

The second finding is that the user-based recommendation

method has the highest MAE and RMSE across all three

results. This means that the user-based recommendation

strategy has the best overall accuracy. The third observation

is that the values of nDCG in all three datasets are very low

(less than 0.1), which means that users will not gain much

from those algorithms and similarities.

The last observation is that the neighborhood size has a

significant effect on the user-based recommender algorithm

while it cannot influence the item-based recommender. For

the user-based recommender algorithm, the rising trends in

the neighborhood size will decrease the overall accuracy, the

value of decision support metrics, and the rank-aware top n

metrics, while the amount of coverage will increase. For

example, if we increase the neighbor size from 50 to 200 and

keep the cutoff at 10, whenever we use these kinds of

similarity strategies, the algorithm will reduce the MAE and

the RMSE by approximately 2%, and the value of P@10,

nDCG@10, as well the MAP will drop about 50 to 60%.

Table IV indicated above result. Moreover, the execution

time and the neighbor size have a proportional relationship:

when the size of the neighbor increases, the algorithm

requires more computing time and vice versa. However, it is

interesting to note that, in the item-based recommender

method evaluation, changes in the neighborhood size did not

affect the performance. The above result shows that the

neighborhood size does not have a connection with

item-based recommenders.

TABLE III: COMPARISON OF CUTOFF FROM DATASETS

 Cutoff nDCG

@N

P@N MAE RMSE MAP

ML

1M

10 0.0080

983

0.01233

92

0.81676

70

1.04791

66

0.0197

379

 20 0.0102
622

0.01347
60

0.81676
70

1.04791
66

0.0197
379

 50 0.0218
086

0.01764
19

0.81676
70

1.04791
66

0.0197
379

ML

100K

10 0.0097

958

0.01399

63

0.82175

78

1.03959

67

0.0287

574
 20 0.0179

058

0.02019

68

0.82175

78

1.03959

67

0.0287

574
 50 0.0350

645

0.02326

10

0.82175

78

1.03959

67

0.0287

574

MT 10 0.0104
423

0.00501
32

1.24001
69

1.63973
29

0.0287
574

 20 0.0159

250

0.00502

81

1.24001

69

1.63973

29

0.0287

574
 50 0.0235

189

0.00564

67

1.24001

69

1.63973

29

0.0287

574

TABLE IV: COMPARISON OF NEIGHBORHOOD SIZE FROM DATASETS

 Nsize nDCG
@N

P@N MAE RMSE MAP

ML

1M

50 0.01841

58

0.02706

59

0.83733

94

1.07423

61

0.02057

13
 100 0.01294

93

0.02051

41

0.82760

88

1.07999

00

0.02026

72
 200 0.01185

68

0.01818

99

0.81785

17

1.04278

14

0.02280

97

ML
100K

50 0.02206
66

0.03085
44

0.85005
45

1.08179
32

0.03121
57

 100 0.01916
29

0.02781
34

0.82197
83

1.04385
10

0.03740
45

 200 0.01080

40

0.01548

25

0.79985

77

1.01255

92

0.03825

84
MT 50 0.01862

35

0.01008

69

1.29381

43

1.73784

27

0.01723

97
 100 0.01306

44

0.00652

63

1.28116

70

1.72272

90

0.01300

26

 200 0.00790
58

0.00417
93

1.27142
37

1.71233
90

0.00939
01

For model-based recommender algorithms, we found that

the performance of each metrics is unstable, which means

that sometimes the increase in iteration improves the

recommendation results and sometimes it does not. Therefore,

it was difficult to say how the number of iterations can affect

the final result. However, it can be concluded that the SVD++

algorithm produced the best results on nDCG@N and P@N

in all three results, which means that the SVD++ provided the

most useful recommendations at the top of the list and did not

waste the users' time. Another interesting finding is the

performance of the coverage. We can find that the

MovieLens 100k dataset has the highest coverage in all three

recommender algorithms, while the MovieTweetings dataset

has the opposite result. As can be seen, the data sparsity issue

discussed above would still be a challenge for a dataset with a

large user population.

According to the above results and graphs, we can

conclude that the best recommendation strategy for the

Apache Mahout library is based on SVD recommenders. The

reason is that the SVD recommender algorithm provides the

most valuable and appropriate predictions at the top of the list

and is the most helpful to users in making good decisions.

VI. CONCLUSION

In this paper, we presented an experiment for

International Journal of Innovation, Management and Technology, Vol. 10, No. 6, December 2019

233

benchmarking best recommender algorithm(s) that can

predict users' interest in movies. The purpose of the

evaluation has been clearly defined. Popular recommender

algorithms and their advantages and drawbacks have been

explained. All evaluation components and the process have

been discussed. Our study shows that it is difficult to say

which recommender algorithm provides the best

recommendation. However, we can claim that the SVD++

provided more valuable and appropriate relative to the

preferences on top of the list and will help users to make good

decisions, while user-centered recommender systems can

predict with better overall accuracy. There is no evidence to

say which algorithm has the best quality. In addition, the

MovieTweetings dataset can achieve better overall accuracy

than MovieLens datasets while it did not perform well in

other evaluation categories. The experiment also showed that

unmodified datasets would cause lack of memory space and

suspend the RiVal toolkit. Therefore, unfiltered datasets

should be avoided in similar evaluations.

Due to the time limitation, we did not have a chance to

evaluate the performance of MovieTweetings dataset on the

LensKit library. Therefore, we want to perform that in the

future so that we can retrieve more valuable information to

compare and contrast. In addition, we need to improve the

evaluation algorithm used in the RiVal toolkit. One possible

improvement could be reorganized and optimize the

algorithm used in the evaluation so that we can prevent or

minimize problems we talked in section six. Another

improvement may focus on developing more evaluation

metrics such as serendipity and popularity, as well as adding

more libraries for comparison.

CONFLICT OF INTEREST

The authors declare that there are is no conflict of interest.

AUTHOR CONTRIBUTIONS

Ruipeng Li processed the experimental data, performed

the analysis, and drafted the manuscript. Luiz Fernando

Capretz conceived the study and was in charge of overall

direction and planning as a project advisor.

REFERENCES

[1] Y. Koren, “Factorization meets the neighborhood: A multifaceted
collaborative filtering model,” in Proc. the 14th ACM SIGKDD

International Conf. on Knowledge Discovery and Data Mining (KDD
'08). New York, NY, USA, 2008, pp. 426-434.

[2] L. Baltrunas, T. Makcinskas, and F. Ricci, “Group recommendations

with rank aggregation and collaborative filtering,” in Proc. the 4th

ACM Conf. on Recommender Systems (RecSys '10), New York, NY,

USA, 2010, pp. 119-126.
[3] M. Ge, C. Delgado-Battenfeld, and D. Jannach, “Beyond accuracy:

Evaluating recommender systems by coverage and serendipity,” in

Proc. the 4th ACM Conf. on Recommender Systems (RecSys '10), New
York, NY, USA, 2010, pp. 257-260.

[4] S. G. Walunj and K. Sadafale, “An online recommendation system for
e-commerce based on apache mahout framework,” in Proc. the 2013

Annual Conf. on Computers and People Research (SIGMIS-CPR '13).

ACM, New York, NY, USA, 2014, pp. 153-158.
[5] J. Zhang and P. Pu, “A recursive prediction algorithm for collaborative

filtering recommender systems,” in Proc. the 2007 ACM Conf. on
Recommender Systems (RecSys '07). New York, NY, USA, 2007, pp.

57-64.

[6] D. Bokde, S. Girase, and D. Mukhopadhyay, “Matrix factorization
model in collaborative filtering algorithms: A survey,” Procedia

Computer Science, vol. 49, pp. 136-146, 2013.

[7] N. Koenigstein and Y. Koren. “Towards scalable and accurate

item-oriented recommendations,” in Proc. the 7th ACM Conf. on
Recommender Systems (RecSys '13). New York, NY, USA, 2013, pp.

419-422.

[8] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl,

“Evaluating collaborative filtering recommender systems,” ACM

Trans. Inf. Syst. 22, vol. 1, pp. 5-53, 2004.
[9] S. Dooms, T. De Pessemier, and L. Martens, “MovieTweetings: A

movie rating dataset collected from twitter,” in Proc. Workshop on
Crowdsourcing and Human Computation for Recommender Systems,

CrowdRec, 2013.

[10] P. Kantor, F. Ricci, L. Rokach, and B. Shapira, Recommender Systems
Handbook, 1st ed., New York: Springer-Verlag, 2010.

[11] S. Funk. (December 2006). On the Stochastic Gradient Descent
Algorithm. [Online]. Available:

http://sifter.org/~simon/journal/20061211.html

[12] J. Bobadilla, F. Ortega, A. Hernando, and A. GutiéRrez,
“Recommender systems survey,” Know.-Based Syst., vol. 46, pp.

109-132, 2013.
[13] T. Nathanson, E. Bitton, and K. Goldberg, “Eigentaste 5.0:

Constant-time adaptability in a recommender system using item

clustering,” in Proc. the 2007 ACM Conf. on Recommender Systems
(RecSys '07). New York, NY, USA, vol. 8, 2007, pp. 149-152.

[14] A. Said and A. Bellogín, “Rival: A toolkit to foster reproducibility in
recommender system evaluation,” in Proc. the 8th ACM Conf. on

Recommender Systems (RecSys '14), New York, NY, USA, 2014, pp.

371-372.
[15] F. M. Harper and J. A. Konstan, “The MovieLens datasets: History and

context,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, vol. 19. 2015.
[16] C. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen, “Improving

recommendation lists through topic diversification,” in Proc. the 14th

International Conf. on World Wide Web (WWW '05). New York, NY,
USA, 2005, pp. 22-32.

[17] S. Dooms, A. Bellogín, T. D. Pessemier, and L. Martens, “A
framework for dataset benchmarking and its application to a new

movie rating dataset,” ACM Trans. Intell. Syst. Technol., vol. 7, no. 3,

pp. 28-29, vol. 41, 2016.
[18] A. Rashid, G. Karypis, and J. Riedl, “Learning preferences of new

users in recommender systems: An information theoretic approach,”
SIGKDD Explor. Newsl., pp. 90-100. 2008.

Ruipeng Li received his bachelor’s degree in

computer science degree from Dalhousie University,
Halifax, Nova Scotia, Canada, in 2016 and obtained

his master of engineering in Western University,
London, Ontario, Canada in the year of 2018. Ruipeng

Li’s research interest are big data and recommender

systems. Ruipeng Li is currently a software
programmer in Toronto.

Luiz Fernando Capretz has vast experience in the

software engineering field as practitioner, manager
and educator. Before joining the University of

Western Ontario (Canada), he worked at both
technical and managerial levels, taught and did

research on the engineering of software in Brazil,

Argentina, England, Japan and the United Arab
Emirates since 1981. He is currently a professor of

software engineering and assistant dean (IT and
e-Learning), and former director of the software engineering program at

Western. He was the director of informatics and coordinator of the computer

science program in two universities in Brazil. He has published over 200
academic papers on software engineering in leading international journals

and conference proceedings, and co-authored two books: Object-Oriented
Software: Design an Maintenance published by World Scientific, and

Software Product Lines published by VDM-Verlag. His current research

interests are software engineering, human aspects of software engineering,
software analytics, and software engineering education. Dr. Capretz received

his Ph.D. from the University of Newcastle upon Tyne (U.K.), M.Sc. from
the National Institute for Space Research (INPE-Brazil), and B.Sc. from

UNICAMP (Brazil). He is a senior member of IEEE, a distinguished

member of the ACM, a MBTI certified practitioner, and a certified
professional engineer in Canada (P.Eng.). Dr. Capretz is currently spending

his sabbatical leave as visiting professor of computer science at New York
University in Abu Dhabi, United Arab Emirates. He can be reached at

lcapretz@uwo.ca, and further information about him can be found at

http://www.eng.uwo.ca/people/lcapretz/

International Journal of Innovation, Management and Technology, Vol. 10, No. 6, December 2019

234

