
  

 

 

 

 

 

 

 

 

 

  

 

 
 

   

 

 

 

 

  

 

 

  

 

 

 

 

 

 

International Journal of Innovation, Management and Technology, Vol. 10, No. 6, December 2019

229doi: 10.18178/ijimt.2019.10.6.865

  

  

Abstract—Nowadays the Internet plays a significant role in 

our day-to-day life. An abundance of information is uploaded 

every second. The excess of information creates barriers to 

Internet users' ability to focus on their own interests. Therefore, 

numerous recommendation frameworks have been 

implemented to predict and provide suggestions to help users 

find their preferred items. However, it is difficult to find the 

most appropriate recommendation strategy(s), one that works 

best for the above issue. In this paper, we present a 

benchmarking experiment that is made by different 

recommendation algorithms on the MovieTweetings latest 

dataset and the MovieLens 1M dataset. The assessment focuses 

on four distinct categories of recommendation evaluation 

metrics in the Apache Mahout library. To make sure that we 

can control the benchmarking procedure efficiently and 

correctly, we also used the RiVaL toolkit as an evaluation tool. 

Our study shows that it is difficult to say which recommender 

algorithm provides the best recommendation and unfiltered 

datasets should be avoided in similar evaluations. 

 
Index Terms—Recommender systems, benchmarking 

recommender systems, recommendation frameworks, 

MovieTweetings and MovieLens datasets. 

 

I. INTRODUCTION 

It is apparent that the volume of Internet users has been 

increasing sharply in past decades. There is a tremendous 

amount of different information be generated on the Internet 

every second. Internet users require using recommender 

systems to help them filter through various dataset sections 

such as hotels, music, films, travel destinations and so on. 

The main purpose of the recommender system is to discover 

the most correct, useful and surprising items from a set of 

selections that best match the interests of an end user [1]. 

With appropriate recommender algorithms, it is possible to 

demonstrate a personalized ranking model and promote 

customer loyalty.  

Many website owners are starting to focus on analyzing 

the performance of recommender systems [2]. However, it 

was difficult to benchmark existing recommender strategies 

and algorithms. There are three major constraints: The first 

issue is related to the dataset selection; there exist different 

barriers including data sparsity, rating density and other 

biases of datasets. The second problem of evaluation is that 

there are numerous of different metrics that aim to evaluate 

various aspects of a recommender algorithm, it is hard to 

analyze the correct result without an explicit evaluation goal. 

Finally, many researchers realized that the measurement of 
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accuracy is not enough to tell the performance of a 

recommender system, other relevant aspects also need to be 

measured in the evaluation process [3]. 

The purpose of this experiment is to figure out what is the 

best algorithm(s) that best matches users’ interests about 

movies nowadays. In this paper, we will show an offline 

evaluation of predictions that are made by different 

collaborative filtering algorithms on the MovieTweetings 

latest dataset (on August 7th, 2017) and MovieLens dataset 

series (100k and 1M). The evaluation focuses on calculating 

four distinct categories of recommendation evaluation 

metrics (accuracy, decision support metrics, rank-aware top n 

and recommendation quality) in the Apache Mahout 

framework. We used the RiVaL toolkit as the evaluation tool 

to ensure that we can control the benchmarking procedure 

effectively and correctly. The rest of the report is organized 

as follows: First, we will provide a brief introduction of 

collaborative filtering recommender system in Section II. In 

Section III, we talk about evaluation components in detail. 

We elaborate on limitations and benefits of using existing 

datasets and the reason of dataset selection. We also discuss 

the evaluation toolkit and cross-validation in detail, as well as 

five evaluation metric categories and their advantages and 

disadvantages. Section IV demonstrates the evaluation setup. 

Section V discusses the evaluation result, as well as 

analyzation and comparison with different dataset. In section 

VI, we explain three problems that we encountered during the 

experiment. The last section talks about future works and 

conclusions. 

 

II. PROCEDURE FOR PAPER SUBMISSION 

The collaborative filtering recommender system would be 

one of the most successful and prevalent recommendation 

techniques in the world. The key idea of this approach is to 

assume that if there exist two users and they are similar in 

mind, they probably will like same items. The collaborative 

filtering technique then collects direct or indirect feedback, 

where direct feedback means item ratings and indirect 

feedback refers to the user clicking a link or searching a 

keyword [4]. 

The collaborative filtering recommender system can be 

divided into two broad categories: the memory-based and 

model-based methods [5]. The memory-based technique 

recommends items for a user by analyzing the ratings from 

other neighbor users. The most famous algorithm in the 

memory-based method is called nearest-neighbor 

collaborative filtering, and there are two main approaches: 

user-based and item-based, where the user-based approach 

calculates the prediction based on a group of 

nearest-neighbor users. Similarly, the item-based 

collaborative filtering method filters items from a subset of 
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nearest-neighbor items. Because the number of items would 

not be likely to grow sharply, the item-based collaborative 

filtering method can be calculated offline [6]. Moreover, the 

model-based technique generates prediction by constructing 

a probabilistic model; it collects a particular user's rating 

information and analyzes it in statistical models. One of the 

most popular algorithms of the model-based 

recommendation system is matrix factorization [7]. The 

singular value decomposition (SVD) technique is one of the 

matrix factorization techniques; it reduces the number of 

dataset features by lowering its space dimensions from N to 

K, where K is less than N [8]. 

A. Notation and Description 

We used consistent mathematical notations for referencing 

various aspects of the recommender system model in this 

experiment. It is common to have a set U of users and a set I 

of items. The lowercase u and u' represent a specific user and 

a group of users in a user set, and the lowercase i and i' 

account for a particular item and a group of items in an item 

set. Ru is the set of items rated/liked or brought by the user u, 

and Au is the group of users who has rated/liked or brought 

the item i. Li is a collection of items remaining in the itemset. 

Nu is a set of nearest-neighbor users, and Ni is a set of 

nearest-neighbor items selected by the recommendation 

algorithm. Finally, Tn represents a list of items generated by 

the recommender algorithm. Table I shows the relationship of 

all notations. 

 
TABLE I: COLLABORATIVE FILTERING NOTATION AND EXPLANATION 

 

B. Final Stage Collaborative Filtering Algorithms 

The user-based recommender provides predictions by 

finding the most similar set of users. The typical prediction 

process of this approach [5] used two standards to select Nu. 

The first rule is selected users must be in the Au group, and 

the second rule is selected users must share similar 

characteristics with the user u. If there is no such user in the 

Au group, the algorithm will predict the rating for a set of 

users in u recursively by finding the Nu of those selected 

users then adding those predicted ratings into the prediction 

process for the active user u. The algorithm that we used in 

the user-based recommendation is called generic user-based 

recommender. This algorithm calculates the similarity 

between u and i using different similarity metrics.  

Sometimes [9] the information of an active user u is not 

available or irrelevant because the user u changed his/her 

short-term interest. Therefore, item-based algorithms have 

been developed. the item-based recommender generates 

predictions by detecting the most similar group of items. If 

items in the Li are highly similar to Ru, then those items in 

the Li will become part of Ni. To determine Tn, the algorithm 

first calculates the similarity between the item i and other 

items in the Li. The algorithm also checks the value of Ru and 

then computes a weight rating to each item in the Tn. Finally, 

the item-based recommender creates a similarity index for 

each item. The advantages of this algorithm are that the 

recommender may reduce the cost of calculation and 

maintain the recommendation quality. The opposite part is 

that the algorithm must calculate the similarity for every item 

in the itemset; thus, the calculation might take longer.  

We selected GenericItemBased and GenericUserBased 

with five similarity classes (Pearson's Correlation, 

Uncentered Cosine Similarity, Spearman Rank, Euclidean 

Distance and Tanimoto Coefficient) in the Apache Mahout 

library [10]. 

Model-based recommender system commonly uses matrix 

factorization to generate predictions [2]. Matrix factorization 

methods characterize both items and users as vectors by 

deducting rating patterns; it provides recommendations based 

on the high parallelism between item and user factors. SVD 

recommenders are distinct by factorization types. In our 

experiment, we used three types of factorization: FunkSVD 

[11], RatingSGD, and SVD++ [7]. The FunkSVD is an 

incremental SVD algorithm that uses gradient descent to 

shorten the processing time. The algorithm iterates overall 

ratings in the training set and predicts the Ru, and then 

calculates all prediction errors. Rating SGD includes user and 

item biases. It can be training data faster. It is an optimized 

version of gradient descent. On the other hand, the SVD++ 

method was implemented based on SGD matrix factorization. 

The SVD++ method combines the latent factor model and 

neighborhood-based model. The algorithm not only focuses 

on how users rate, but it also considers "who has rated what." 

As a result, the accuracy has been increased. 

C. Identified Issues 

Memory-based methods have three identified issues: 

sparsity, scalability, and the cold-start problem [1]. The 

sparsity problem talks about shortages in a dataset. Typically, 

a user cannot provide too many ratings and can only lay over 

part of the item. As a result, the recommender algorithm may 

output a fewer number of items. One possible way to solve 

the high sparsity issue is to use model-based recommendation 

methods. Moreover, if the number of users and items 

increases sharply, then the time and resources that are 

required to run those algorithms also rises gradually. This is 

referred to as the scalability issue. One optimized solution for 

the scalability issue is to implement distributed processing 

methods that reduce the processing time for mapping. 

The cold start problem is the most prevalent issue for 

memory-based methods; it appears when the recommender 

system is not able to collect sufficient information to provide 

trustable recommendations. Bobadilla et al. [12] declared 

three types of cold start problems: new community, new item, 

and new user. The new community code start means it is 

Notation Explanation 

U Userset 

I Itemset 

u, us Users in the userset. us(u)∈ U 

i, is Items in the Itemset. is(i)∈ I 

Ru Items that the user u liked/rated. Ru ⊆ I 

Rui User ’s rating of item i 

Au Users who also likes item i. Au ⊆ U 

Li Items left in the itemset. Lu ⊆ I 

Nu/Ni Selected neighborhood user-set/itemset 
for the user u.  

1.Nu ⊆ Au 

2.Ni ∩ Li = ∅ 

Tn The top-n recommendation made by the 

algorithm.  

1. Tn ⊆ Li  

2. Tn ∩ Ru = ∅ 
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impossible to start the recommendation due to lack of 

information. The new item has less impact of the system. It 

refers to new items that just added into system that do not 

have enough ratings. The new item cold start problem can be 

solved by creating a group of active users to rate each new 

item in the database mandatorily. Lastly, the new user issue is 

the one of the most critical problems [13]. A new user does 

not provide any ratings. Thus, it is impossible to obtain any 

personalized recommendations. A common solution to the 

new user cold start problem is to let new users submit 

additional information during registration. 

A dataset is a collection of user ratings, and it contains 

several components. There are a lot of identified issues, and 

they involve in different areas. Some of them are caused by 

limitations of recommendation methods. Some of the biases 

are related to the data itself; these includes synonymy, gray 

sheep, and shilling attacks [14]. Synonymy refers to an item 

having multiple names. Most of the recommenders cannot 

distinguish the difference between names and count them as 

different items. Thus, the recommendation quality is 

decreased. Gray Sheep pertains to a group of users who 

cannot take advantage of the recommender system because 

they have inconsistent points of view. Shilling attacks have a 

bearing on the reliability of data. Any user who can access the 

Internet can create a rating for a product. In some cases, 

product stakeholders generate an adequate number of 

positive recommendations for their goods and give negative 

ratings to their business adversaries. In other words, these 

people provide counterfeit data to the database. Data 

synonymy and shilling attacks have a significant impact on 

the reliability and quality of recommendation, while gray 

sheep users are undesired.  

 

III. REVALUATION DESIGN AND RELATED WORKS 

Recommender systems are designed with different 

strategies. However, they bring two problems: the first one is 

unapparent evaluation goals and tasks. Many studies 

evaluated incorrect or insufficient data because different 

strategies have different purposes and missions. To avoid this 

issue, the evaluation goal and tasks must be identified clearly 

at the beginning. In our experiment, we defined and validated 

evaluation objectives in the initial and planning stages. 

Moreover, the resulting comparison is that various libraries 

become an issue because the values of the metrics are usually 

different even when they use the same method. A minor 

difference in the method of developing algorithm and data 

organization may cause a notable change in results. Our 

solution is to use the RiVaL toolkit [14], a tool that can 

perform a cross-platform evaluation. Therefore, we can 

compare results generated by different frameworks 

effectively. 

A. Goal and Tasks 

The evaluation goal can differ because recommender 

systems can be designed in different ways and with different 

algorithms. Even though we already have a good algorithm, 

we should improve its performance. First, it is essential to 

understand what should be optimized. This is the core of 

evaluation, as it is difficult to evaluate a recommendation 

system without a clear goal. Many researchers point out that 

the measurement of the difference between the prediction and 

actual ratings is not adequate. Harper and Konstan [15] 

claims that a set of different evaluation metrics has been 

introduced to analyze the performance of recommender 

systems. This includes the usefulness of the algorithm, the 

correctness of top-ranked items, and the analyzation of the 

lack of coverage. Our evaluation goal is to identify which 

recommender system is better for movie website owners. We 

focused on accuracy, decision support metrics, rank-aware 

metrics, and quality. 

Herlocker et al. [8] argued that the first step of the 

evaluation process is to understand user tasks that the system 

must achieve. In our point of view, finding some good items 

and finding credible recommenders are two important user 

tasks that best fit our evaluation goals. The term "find some 

good items" determines how good the recommender system 

is. Many recommender algorithms try to achieve accuracy by 

predicting how a specific user would like the list of items and 

rank them. The above process is indispensable, but it is not 

enough to identify the best recommender system(s). However, 

in some situations, customers want to overlook all the 

existing recommendations, so they spend a lot of time 

researching the recommendations and filtering the 

recommendations they think are useless [8].  

Therefore, it is essential to premeditate coverage in the 

evaluation process. Furthermore, "finding credible 

recommenders" is another valuable task that must be 

complete. Many customers, in particular users who want to 

find useful and interesting music and movies, are not likely to 

accept a recommender automatically. Some users tend to 

change their account settings to investigate how the 

recommendation set changes. If the recommender system 

cannot provide items that are already known by and are 

guaranteed to satisfy users (i.e., very famous songs or 

movies), those users will withdraw from the service and seek 

other valuable recommender systems. The above situation is 

unacceptable for website owners. Therefore, it is desirable to 

analyze decision support metrics and rank-aware metrics 

such as Mean Average Precision (MAP), Precision@N, and 

nDCG@N. 

B. Cross-Validation 

The fundamental process of evaluation involves using 

existing data to simulate user behavior and check if a 

recommender method can predict the behavior successfully. 

Cross-validation is one such desired simulation method [15]. 

In a single fold cross-validation simulation, the selected 

datasets have been divided into two sections, a training 

dataset and a test dataset, which have different functions. On 

the one hand, the recommender algorithm interacts with the 

training data set, and the algorithm treats the training data as 

input and uses this data set to generate a list of 

recommendations and predictions. On the other hand, the test 

data has been concealed, and the recommender algorithm 

cannot touch it. It is noteworthy that the materials in the test 

data will never change. Then we compare the 

recommendations and predictions from the training data with 

the test data and calculate the divergence between them. In 

the last step, we use these calculations as inputs to generate 

various metrics. In the above process, we treat the training 

data as preferences or past behaviors that already exist in the 
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database. Similarly, we look at the test dataset as ratings that 

users are likely to give after they receive recommendations 

made by the recommender system. That is the simulated user 

behavior. 

A potential issue with single fold cross-simulation is the 

recommender algorithm might evaluate a group of the easiest 

or hardest users. Thus, the accuracy might decrease. To avoid 

this issue, we used five-fold cross-validation, which 

separates data into multiple splits [9]. Each split has a 

training dataset and test dataset. For each partition, we 

perform a single fold cross-validation. Lastly, we average 

the value of the metrics. This way, the possibility of picking 

the hardest or easiest users will become extremely small.has 

rated what." As a result, the accuracy has been increased. 

C. Datasets 

Datasets would be one of the most important parts of the 

evaluation. We found several existing datasets and 

discovered that many of them are outdated and no longer 

available, including CAMRa (2012), Netflix (2007), and 

EachMovie (2004). Furthermore, we researched about Jester, 

which is a set of rated online jokes [17], as well as the 

Book-Crossing Dataset [18]. The above two datasets are in 

divergent domains and not related with evaluation goals.  

MovieTweetings datasets. The original dataset was 

integrated from the IMDb website and has a rating scale from 

one to ten. It has many advantages. First, the dataset always 

includes the most recently added users and movies; second, 

the dataset uses similar formats and data structure. It is 

possible to perform a reproducible evaluation with other 

datasets. Lastly, it reduced the synonymy issue and lowered 

the possibility of shining attacks because of the way they 

collect data. One drawback is the sparsity problem; it is 

difficult for recommender systems to generate predictions for 

those people with few ratings. Another disadvantage is the 

age distribution of Twitter user's. According to Statistics, the 

age distribution of Twitter users in the United States was 

more than 60% between 18 to 44 years of age in 2016. 

Therefore, the MovieTweetings dataset may not contain too 

much data uploaded by the 45+ age group.  

MovieLens Datasets. There are several versions of 

MovieLens datasets [9]. We observed two datasets that 

similar with the MovieTweetings latest dataset. The first one 

is MovieLens Latest Datasets, which contains twenty-six 

million ratings. The second one is MovieLens 1M datasets. In 

addition, we also found MovieLens 100k, which is the most 

popular dataset that has already been analyzed in many types 

of research and studies. We finally selected MovieLens 1M 

and 100k datasets. The first reason is the limitation of time, 

and the second reason is that MovieTweetings and 

MovieLens 1M datasets have close ratings. Therefore, it is 

convincing to make comparisons. Moreover, the evaluation 

result of the MovieLens 100k dataset is publicly available. 

We can compare them with the result generated in our 

experiment. 

Table II demonstrates basic numerical information about 

selected datasets. The MovieTweetings dataset has the 

largest volume of users and movies but the least density, and 

vice versa for MovieLens 100k. In addition, MovieLens 1M 

datasets have the most ratings, and its density is ten times 

higher than the MovieTweetings dataset. There is no users 

and movies had been filtered in the MovieTweetings latest 

dataset [16], while the MovieLens dataset series only 

included users with more than twenty ratings. Although we 

selected different datasets, the density problem remains in the 

latest dataset. 

 
TABLE II: DATASET INFORMATION 

 

D. Evaluation Tool 

The RiVaL toolkit is a cross-framework and open-source 

evaluation project implemented in Java. It allows 

experimenters to control the entire evaluation process with a 

transparent evaluation setting [14]. It divides the 

benchmarking process into four stages: data splitting, item 

recommendation, candidate item generation, and 

performance measurement. In our experiment, the item 

recommendation was performed by Apache Mahout and 

other phases were performed in RiVaL. The Apache Mahout 

framework uses the training and test file generated by 

cross-validation to create recommendation list and use it as 

input in candidate item generation stage. Therefore, in our 

case, stage one, three, and four were executed in the RiVaL 

toolkit. 

IV. EVALUATION SETUP 

Evaluation for MovieLens datasets (1M and 100K) are 

conducted on a Machenike laptop, which has a 

seventh-generation Intel Core i7-6700HQ processor @ 

2.6GHz, 16GB DDR4, 2400MHz RAM, and NVIDIA 

GeForce GTX 1060 graphics card with 6GB video memory 

under the Windows operating system. Evaluation for 

MovieTweetings latest dataset is conducted on a desktop, 

which has a seventh-generation Intel Core i7-6700 processor 

@ 3.6GHz, 16GB DDR4, 2400MHz RAM, and NVIDIA 

GeForce GTX 1060 graphics card with 3GB video memory 

under the Windows operating system. 

The actual process can be divided into seven steps. We 

apply different settings in our evaluation algorithm at the first 

phase. For instance, we set the cutoff to be 10, 20, and 50, and 

the neighborhood size is set to be 50, 100, and 200 in 

user-based and item-based recommender algorithms while in 

SVD recommenders, the value of the cutoff and 

neighborhood size are constant at 20 and 100. The variable of 

SVD recommenders is the number of interaction levels which 

is set to be 10, 20, and 50, respectively.  

Second, a selected dataset (MovieTweetings and 

MovieLens) is downloaded and stored on the local drive. In 

the third phase, we perform the five-fold cross-validation. In 

the fourth and fifth steps, recommended items are generated 

by algorithms in the Apache Mahout, and candidate movies 

are generated. In the sixth stage, we use data generated in the 

fourth step as input to create five different evaluation results. 

In the final step, we store the evaluated result on Google drive 

for later data analyzation. We have also implemented a timer 

Dataset Users Ratings Movies Density Latest 
rating 

MT 50298 632225 28721 0.044% Aug 

07,2017 
ML 1M 6000 1 M 4000 0.537% Feb,2003 

ML 

100K 

943 100000 1682 6.305% Apr,1998 
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to calculate the execution time from step four to six because 

this is the actual evaluation processing time. 

 

V. RESULTS AND DISCUSSIONS 

In general, the total execution time for the 

MovieTweetings latest dataset is 1379155 seconds (about 

383.09 hours). The evaluation time for MovieLens 1M is 

1539738 seconds (about 427.7 hours). Furthermore, the total 

running time for MovieLens 100k is 30927 seconds 

(approximately 8.590 hours). According to the results, we 

observed that as the size of the dataset increased numerically, 

the algorithm execution time will increase exponentially. 

Moreover, the Item-based recommender has the highest 

running time, while the overall user-based recommender has 

the lowest time among all three datasets.  

We discovered that several parameters can influence the 

performance of memory-based recommender algorithms. 

The first variable is the value of cutoff. Table III shows mean 

results and its relationship with the number of cutoff in each 

dataset. We also discovered that a change in the cutoff would 

only affect decision-support and rank-aware metrics; when 

the value of the cutoff rises, the amount of P@N and 

nDCG@N also increase. Another interesting point related to 

the cutoff is that it has a significant effect on the item-based 

recommender algorithm. 

We noticed that the performance of nDCG@N and P@N 

increased sharply when the number of cutoffs increases. 

Furthermore, from the results, we can determine that values 

of MAE, RMSE, and MAP did not change when we set the 

cutoff from 10 to 50 and let the neighborhood size remain at 

100. Therefore, the value of the cutoff cannot affect the value 

of accuracy metrics when the neighborhood size is constant. 

The second finding is that the user-based recommendation 

method has the highest MAE and RMSE across all three 

results. This means that the user-based recommendation 

strategy has the best overall accuracy. The third observation 

is that the values of nDCG in all three datasets are very low 

(less than 0.1), which means that users will not gain much 

from those algorithms and similarities. 

The last observation is that the neighborhood size has a 

significant effect on the user-based recommender algorithm 

while it cannot influence the item-based recommender. For 

the user-based recommender algorithm, the rising trends in 

the neighborhood size will decrease the overall accuracy, the 

value of decision support metrics, and the rank-aware top n 

metrics, while the amount of coverage will increase. For 

example, if we increase the neighbor size from 50 to 200 and 

keep the cutoff at 10, whenever we use these kinds of 

similarity strategies, the algorithm will reduce the MAE and 

the RMSE by approximately 2%, and the value of P@10, 

nDCG@10, as well the MAP will drop about 50 to 60%. 

Table IV indicated above result. Moreover, the execution 

time and the neighbor size have a proportional relationship: 

when the size of the neighbor increases, the algorithm 

requires more computing time and vice versa. However, it is 

interesting to note that, in the item-based recommender 

method evaluation, changes in the neighborhood size did not 

affect the performance. The above result shows that the 

neighborhood size does not have a connection with 

item-based recommenders. 

TABLE III: COMPARISON OF CUTOFF FROM DATASETS 

 Cutoff nDCG

@N 

P@N MAE RMSE MAP 

ML 

1M 

10 0.0080

983 

0.01233

92 

0.81676

70 

1.04791

66 

0.0197

379 

 20 0.0102
622 

0.01347
60 

0.81676
70 

1.04791
66 

0.0197
379 

 50 0.0218
086 

0.01764
19 

0.81676
70 

1.04791
66 

0.0197
379 

ML 

100K 

10 0.0097

958 

0.01399

63 

0.82175

78 

1.03959

67 

0.0287

574 
 20 0.0179

058 

0.02019

68 

0.82175

78 

1.03959

67 

0.0287

574 
 50 0.0350

645 

0.02326

10 

0.82175

78 

1.03959

67 

0.0287

574 

MT 10 0.0104
423 

0.00501
32 

1.24001
69 

1.63973
29 

0.0287
574 

 20 0.0159

250 

0.00502

81 

1.24001

69 

1.63973

29 

0.0287

574 
 50 0.0235

189 

0.00564

67 

1.24001

69 

1.63973

29 

0.0287

574 
 

 
TABLE IV: COMPARISON OF NEIGHBORHOOD SIZE FROM DATASETS 

 Nsize nDCG
@N 

P@N MAE RMSE MAP 

ML 

1M 

50 0.01841

58 

0.02706

59 

0.83733

94 

1.07423

61 

0.02057

13 
 100 0.01294

93 

0.02051

41 

0.82760

88 

1.07999

00 

0.02026

72 
 200 0.01185

68 

0.01818

99 

0.81785

17 

1.04278

14 

0.02280

97 

ML 
100K 

50 0.02206
66 

0.03085
44 

0.85005
45 

1.08179
32 

0.03121
57 

 100 0.01916
29 

0.02781
34 

0.82197
83 

1.04385
10 

0.03740
45 

 200 0.01080

40 

0.01548

25 

0.79985

77 

1.01255

92 

0.03825

84 
MT 50 0.01862

35 

0.01008

69 

1.29381

43 

1.73784

27 

0.01723

97 
 100 0.01306

44 

0.00652

63 

1.28116

70 

1.72272

90 

0.01300

26 

 200 0.00790
58 

0.00417
93 

1.27142
37 

1.71233
90 

0.00939
01 

 

For model-based recommender algorithms, we found that 

the performance of each metrics is unstable, which means 

that sometimes the increase in iteration improves the 

recommendation results and sometimes it does not. Therefore, 

it was difficult to say how the number of iterations can affect 

the final result. However, it can be concluded that the SVD++ 

algorithm produced the best results on nDCG@N and P@N 

in all three results, which means that the SVD++ provided the 

most useful recommendations at the top of the list and did not 

waste the users' time. Another interesting finding is the 

performance of the coverage. We can find that the 

MovieLens 100k dataset has the highest coverage in all three 

recommender algorithms, while the MovieTweetings dataset 

has the opposite result. As can be seen, the data sparsity issue 

discussed above would still be a challenge for a dataset with a 

large user population. 

According to the above results and graphs, we can 

conclude that the best recommendation strategy for the 

Apache Mahout library is based on SVD recommenders. The 

reason is that the SVD recommender algorithm provides the 

most valuable and appropriate predictions at the top of the list 

and is the most helpful to users in making good decisions. 

 

VI. CONCLUSION 

In this paper, we presented an experiment for 
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benchmarking best recommender algorithm(s) that can 

predict users' interest in movies. The purpose of the 

evaluation has been clearly defined. Popular recommender 

algorithms and their advantages and drawbacks have been 

explained. All evaluation components and the process have 

been discussed. Our study shows that it is difficult to say 

which recommender algorithm provides the best 

recommendation. However, we can claim that the SVD++ 

provided more valuable and appropriate relative to the 

preferences on top of the list and will help users to make good 

decisions, while user-centered recommender systems can 

predict with better overall accuracy. There is no evidence to 

say which algorithm has the best quality. In addition, the 

MovieTweetings dataset can achieve better overall accuracy 

than MovieLens datasets while it did not perform well in 

other evaluation categories. The experiment also showed that 

unmodified datasets would cause lack of memory space and 

suspend the RiVal toolkit. Therefore, unfiltered datasets 

should be avoided in similar evaluations. 

Due to the time limitation, we did not have a chance to 

evaluate the performance of MovieTweetings dataset on the 

LensKit library. Therefore, we want to perform that in the 

future so that we can retrieve more valuable information to 

compare and contrast. In addition, we need to improve the 

evaluation algorithm used in the RiVal toolkit. One possible 

improvement could be reorganized and optimize the 

algorithm used in the evaluation so that we can prevent or 

minimize problems we talked in section six. Another 

improvement may focus on developing more evaluation 

metrics such as serendipity and popularity, as well as adding 

more libraries for comparison. 
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