

Abstract—The current trend for innovation management is

going upward, the startup scene is more active than ever and

new processes and trends to foster these innovations are

developed constantly. Although we can see such an upwards

trend, there is not as much development in software

architectures supporting innovation management. In this work,

a requirements analysis for such a software architecture was

done based on various innovation processes. Finally, we propose

this architecture as a system of systems together with our

current reference implementation. The system is evaluated in

various user studies, e.g., teaching, practical use at a university,

and innovation competitions.

Index Terms—Architecture, design thinking, innovation, lean

startup, system of systems.

I. INTRODUCTION

Innovation management is usually a collaborative task

done in small groups. To foster innovation, there exist

various processes, methodologies and principles. With these,

the development of new products is stream-lined causing

more and more companies to utilize these techniques. Current

approaches are mostly centered around physical interaction,

drawing on whiteboards or post-it notes. This falls short,

when physical presence is not possible (e.g., in globalized

companies or companies supporting remote working) or the

created artifacts have to be duplicated and further edited.

Collaborating on a project in innovation management

usually requires the physical presence of all stakeholders in

customer interview meetings, stand-up meetings, canvas

workshops, etc. Alas, current tools do not support lean

technologies in a distributed setting well, because they do not

support distributed idea management, distributed canvas

development, and distributed document creation for business

cases.

Our objective is to support innovation in a distribution and

collaborative manner for user groups all over the world.

This paper presents LINC (Lean INnovation Center), a

web portal with a tool suite to support distributed lean

development. LINC is a distributed innovation platform with

a holistic approach. Current innovation platforms usually fall

short when supporting multiple representation formats or

processes, e.g., the innovation platform just supports the

ideation process or just the creation of business model

canvases. With LINC, we want to propose an integrated

innovation platform which supports many existing

innovation processes. This work is structured as follows: first

Manuscript received February 9, 2019; revised May 29, 2019.
The authors are with the Technische Universität Dresden, Germany

(e-mail: firstname.lastname@tu-dresden.de).

we give an overview of the related work. In Chapter III,

several influential innovation concepts are presented. From

these, requirements for our platform are derived, which gets

introduced in Chapter IV together with the implementation

details for all components. Chapter V further details our

targeted reference architecture and how to model it with

advanced concepts from SoS design. The first prototypes of

the LINC platform are evaluated in several qualitative case

studies in Chapter VI. Finally, we give a conclusion and an

outlook.

II. RELATED WORK

The related work, to our approach is quite sparse. To our

knowledge, there are no innovation platforms, which

integrate as many tools as we do. Especially in academic

works, the focus has been always on single applications.

Therefore, we will give a short overview of the related work

from our core platforms: idea- and canvas- management.

For idea management, there was a survey done by [1] with

a comparison of multiple idea management platforms. One of

the broader used platforms is Neurovation [2], which is an

innovation challenge platform. Businesses can create

innovation competitions here and an interested community

will create ideas. Each competition has a set of prizes which

are distributed among the best ideas. The Neurovation

platform was also the basis used by TÜV Austria in

InnovaTÜV [1]. From the book [1], no platform was shown,

which supported more than just idea management, although

InnovaTÜV depicted in their process, that a form of canvas

management and project planning is required.

Idea-Mirrors are a research prototype suggested for

companies to collaboratively create and edit ideas. The main

goal of the idea mirror is to support the idea creation process

in its earliest phases, when it is depending on a lot of

communication and collaboration. It is meant to be used in

conjunction with an existing idea portal which provides an

interface for accessing its data [3]. Therefore, it could also be

integrated into the LINC-ecosystem.
Digital canvas editing tools were reviewed according to

their features in [4]-[6]. In [6], all existing tools were

compared against a set of 31 features. The most features are

implemented by Realtime Board with 30. Our proposed

solution Fridolean reaches 19 features. Since the Fridolean

development only started 1 year ago, we are confident to

achieve most features soon.

III. CONCEPT

With LINC, our goal is to build an integrated online

platform supporting multiple innovation processes. The main

driver behind this platform is the lean innovation process [7]

An Architecture for A Distributed Lean Innovation

Management System

Carl Mai, Dominik Grzelak, Mariam Zia, Diana Lemme, and Uwe Aßmann

International Journal of Innovation, Management and Technology, Vol. 10, No. 4, August 2019

147doi: 10.18178/ijimt.2019.10.4.853

International Journal of Innovation, Management and Technology, Vol. 10, No. 4, August 2019

148

and design thinking methodology [8]. The next chapter will

review existing innovation processes and methodologies to

derive our requirements from.

A. Innovation Processes and Methodologies

In Fig. 1, we depict the process of the Platform

Innovation Kit [9], which is following 5 consecutive steps.

We want to explain each step and inspect it to derive

requirements for our system.
1. Environment Scan: The goal is to understand the market,

including market & industry forces, key trends and economic

forces. To handle this information, documents must be

managed and shared, tasks must be created and assigned.

2. Ideation Phase: Here a plethora of ideas are generated

based on the previous environment scan. For this a structured

way to enter ideas is needed. During the ideation phase it is

important to provoke new ideas, e.g., by combining different

ideas or other creative processes. At the end of the ideation

phase the resulting ideas must be filterable and ranked.

3. Value Proposition: From a generated idea, a value

proposition or business model canvas should be filled to

understand more on the subject. This step requires a

collaborative canvas management tool.

4. Service Design: In this step, a prototype is created or a

possible architecture invented. This phase is highly

application specific. A platform could support this phase best

by improving the communication within the team. As a

requirement we derive from this an agile task management

tool and a chat platform to share intermediate results and

coordinate the development.

5. Strategy: The final phase of the Platform Innovation kit

is coming up with a good strategy, involving the investigation

into competitors, stakeholders, business case and required

resources. This step can be supported with suitable canvases,

collaborative documentation and task management.

Fig. 1. Process of platform innovation kit [8].

The TÜV Austria group also developed a process for their

global innovation strategy in 2016 called InnovaTÜV [1].

The process involves their internal sources (i.e., employees),

customers and external sources & trends. In a first step ideas

are created, rated and prioritized. The result of this step is an

innovation fact sheet. The second step is implementation

planning, where a concept is developed together with project

planning and budget planning. The results of this step is a

business plan. The third step is called innovation project.

Within this step the project is carried out by execution and

controlling. The result is a completed project. In the last step,

broad commercialization is performed and controlled over

the span of 6 years.
The lean startup process has a 3-phase cycle of

build—measure—learn. The main goal is to speed up every

aspect of this cycle because a good product has to go through

this cycle multiple times. The build phase is the development

of the product or prototype. The measure phase is getting

customer feedback on the product by interviews or usability

tests. Based on this data, the learn phase starts which will

incorporate the data in the business model canvas or use this

data to refine the idea. [10]

February 23,2011 16:1 W SP C /0219-8770 195-ijitm S0219877011002192

Lean Innovation–Introducing V alue System s to P roduct D evelopm ent 47

a prom otion ofindividualresponsibility has the fundam entaladvantage ofa higher

m otivation ofthe em ployees.C orrespondingly,over three quarters ofthe organiza-

tions m entioned to system atically prom ote the adoption ofindividualresponsibility

of their em ployees in developm ent. T he tools and m ethods used for this purpose

differ: the m ajority focuses on “black box”process m odules w ith the design of

sequences ofactions in one’s ow n responsibility as w ellas the design ofcom ponents

in one’s ow n responsibility w ithin certain constraints.

T he findings ofthis survey disclose im portantsuccess factors,w hich significantly

affect the im plem entation oflean innovation.E specially,the analysis ofoutperform -

ers has show n prom ising patterns ofbehavior:system atic w aste identification,focus

on custom er value by tim e com pliance,reuse ofproven solutions and concepts,flex-

ible allocation ofbudgets and capacities,product standards,and a strong position

ofproject leaders.

3. T he L ean Innovation System

M aintaining a com petitive advantage in R & D requires not only increases in effec-

tiveness, but also in efficiency of R & D . Significant product differentiation needs

to be achieved also under a reduced deploym ent of resources. T his is the central

objective of lean innovation — by applying the lean thinking principles to R & D

m anagem ent.

So far,this transfer has been initiated in first attem pts,but has notbeen carried

out system atically yet.C om parable guiding them es to lean production are stillnot

identified for lean innovation. Lean innovation today is on its w ay, getting m ore

system atic.T he lean innovation approach presented here relies on 10 key principles

that need to be im plem ented in R & D (Fig. 5). T he 10 principles are abstracted

into the guiding them e oflean innovation,w hich uses three steps:“structure early,

synchronize easily,and adapt securely.”

Product Architecture
Technology-and Function Model

Product Line Optimisation
Feature Clusters

Value System
Target Hierarchy

Design-Sets
Design Space Management

Capacity Planning
Balancing Model

Synchronization
Rhythm

Perfection
Robustness Model

Value Stream Definition
Value Stream Mapping

Derivation
Release Management S

tru
k
tu

rie
re

n

Synchronisieren

A
d
ap

ti
e
re

n

Lean

Innovation

Motivation
Product Identity

S
tru

ctu
re

E
arly

Synchronise Easily

A
d
a
p
t
S

e
cu

re
ly

F ig.5.T he lean innovation principles.

In
t.

 J
.
In

n
o

v
at

io
n

 T
ec

h
n
o

l.
 M

an
ag

em
en

t
2

0
1

1
.0

8
:4

1
-5

4
.

D
o

w
n

lo
ad

ed
 f

ro
m

 w
w

w
.w

o
rl

d
sc

ie
n

ti
fi

c.
co

m
b

y
 D

R
E

S
D

E
N

 U
N

IV
E

R
S

IT
Y

 O
F

 T
E

C
H

N
O

L
O

G
Y

 o
n

 1
0

/1
6
/1

8
.

R
e-

u
se

 a
n

d
 d

is
tr

ib
u

ti
o
n

 i
s

st
ri

ct
ly

 n
o

t
p
er

m
it

te
d

,
ex

ce
p

t
fo

r
O

p
en

 A
cc

es
s

ar
ti

cl
es

.

Fig. 2. Lean innovation process [7].

Lean Innovation is a set of principles which are shown in

Fig. 2. It is based on three core principles: structure early,

synchronize easily and adapt securely. These are further

refined into 10 aspects. It is difficult to come up with concrete

requirements for these principles as they are of abstract

nature. Nevertheless, the three core principles are explained

here and requirements are deduced. Structure early is the

requirement to have as early as possible the goals defined and

the basis analyzed. Stakeholder involvement is here already

an important task. Synchronize easily is a method to avoid

waiting times in the creative process by facilitating the

synchronization of intermediate results. This step is usually

supported by working in the same office. But nowadays

within large companies, this often also means an easy form of

document sharing and collaboration.

B. Dynamic Workflows

From the previous section it can be seen, that most

innovations follow a specified process or workflow. In [7],

the conflict on the level of specification of a workflow was

detailed. On one hand it is required to give good guidelines.

On the other hand, these guidelines should be open enough to

support dynamic changes. Products and projects are very

individual and could even change within one process [7],

[11].
Traditionally, only fixed processes are supported in

workflow systems. To implement dynamic behavior there are

generally two approaches: modeling all possible alternatives

at design time or dynamically modifying the workflow

system at run time. Each approach has its advantages and

disadvantages. While modeling all possible alternatives has

the advantage to previously model check the whole system,

the dynamic modifications to the workflow system prevent

such checks in advance. On the other hand, the approach

which previously models the alternatives cannot express

unanticipated processes.

A solution for a dynamic workflow system are the ad-hoc

workflows, these kind of workflow systems model a basic

process which can be later refined and modified according to

the dynamic needs. In [12] such a concept was proposed on

the basis of Petri nets. During the execution, the net is

extended and shrinked. With each such modification an

analyzer is utilized to check global properties of the net.

Furthermore, it is possible to store these dynamic nets for

later use.

An alternative based approach are adaptive Petri nets [13].

The alternatives can be expressed with context places, which

can prevent the execution of particular sub nets.

For the LINC-system we want to use a hybrid approach,

which can utilize as much of the static knowledge as possible

within adaptive Petri nets, while still supporting deviations

from this model with dynamic modifications to the net —

similar to ad-hoc workflows.

A workflow system has several tasks to fulfil: teaching,

structuring and documenting. By teaching the user, we expect

that the process is not yet known to the user and he or she

requires each step laid out in detail. With structuring, we

want to support experienced users, who have enough

knowledge to modify the process according to their needs but

still want to utilize some milestones. Finally, documentation

should persist the route a user took to come up with the

resulting product. This is mainly relevant for research

purposes to discover the best processes and methodologies.

C. System of Systems (SoS)

SoS is defined as an “emergent class of systems that are

built from components which are large scale systems in their

own right” [14], [15]. Some examples of SoS are integrated

air defence systems, traffic management systems and smart

grids. Characteristic features of SoS [14], [15] that

distinguishes it from monolithic systems are

1. Operational independence: An SoS is composed of

constituent systems that are autonomous, independent and

are useful in their own right i.e., a constituent system

disassembled from an SoS, can continue to fulfil its own valid

purpose.

2. Managerial independence: Constituent systems operate

independently and are managed to achieve their own purpose.

The constituent systems are individually acquired and

integrated to SoS while they are continuously managed for

their own operational purpose independent from SoS.

3. Emergent behaviour: Behaviour of SoS emerges as a

result of interaction among constituent systems and cannot be

achieved by any one of the constituent systems alone.

4. Geographic distribution: Constituent systems are

geographically distributed that can exchange only

information and knowledge from one another and not

physical quantities of mass and energy.

5. Evolutionary development: SoS is never complete,

rather it evolves continuously over time as requirements

change. New functionalities and systems may be added and

removed which might change the structure of SoS over time,
Properties 1, 2 and 3 are the most important for an SoS. By

properties 1 and 2 it is assured that an SoS is composed of

individual systems that are autonomous and independently

owned that can perform new functions when placed together.

Property 3 is also important because if the SoS does not give

new properties or functions that are not possessed by

constituent systems, then the system is not considered as a

whole. Property 4 and 5 are not absolutes and may or may not

exist. Another property identified by [16] is (6) heterogeneity,

i.e., an SoS is composed of dissimilar systems but again as

discussed in [15] this is also not absolute. Properties 4, 5 and

6 are common but not required and are not distinguishing for

an SoS.

IV. ARCHITECTURE

In this chapter the technology and constituent components

of the LINC platform are explained. As discovered in the

previous chapter, our required platforms are as follows:

P1 Idea management / Innovation platform

P2 Canvases

P3 Project management

P4 Document management

P5 Communication platform

With following general requirements:

R1 Central authentication

R2 Synchronization between the platforms

R3 Easy installation and administration

The main building blocks here, are the Docker-based

containers, supporting R3, and the central authentication

system (R1). Furthermore, each platform should have a

REST-API, which can be used for synchronization (R2).

Besides these three commonalities, the platforms are quite

heterogeneous. An overview of all current components from

the LINC-system can be seen in Fig. 3.

In this chapter, we will first give an overview of the central

authentication system, then all the different services and their

International Journal of Innovation, Management and Technology, Vol. 10, No. 4, August 2019

149

implementation are explained. In the end a short sub-section

explains how we utilize Docker in the deployment process.

A. [R1] Authentication System: Keycloak

Because we are integrating multiple different platforms,

which otherwise have their own authentication mechanisms,

we need a central user management tool. We decided to use

the open source software Keycloak, developed by Redhat and

based on WildFly. This platform implements many open

standards (e.g. SAML, OpenId-Connect) and provides many

adapters for different programming languages (e.g. Java,

JavaScript, Python). While the integration with new

platforms was not always easy, using such a large supported

platform was a good choice. Keycloak itself brings a minimal

user management system. A user can be part of multiple

groups and roles. Attributes can be manually set by the

connected services. Which we use right now for a mapping

from the Keycloak-user to the service user-id. In the

LINC-ecosystem, we allow the creation and participation in

groups by the users. Roles are set by administrators only and

currently distinguish only between admin and normal user.

B. Platforms

LINC consists of five platforms, which we want to explain

here.

Watch our Ideas [P1]

Frontend

JQuery

Backend

Wildfly

Fridolean [P2]

Frontend

React

Backend

ExpressJS

Taiga [P3]

Frontend

CoffeeScr.

Backend

Django

CodiMD [P4]

Frontend + Backend

JQuery, ExpressJS

Rocket.Chat [P5]

Frontend + Backend

Meteor, ExpressJS

Keycloak [R1]

Frontend

HTML+JS

Backend

Wildfly

Database

MariaDB

Database

PostgreSQL

Database

MariaDB

Database

PostgreSQL

Database

MongoDB

Database

MongoDB

Checkup [R3]

Frontend + Backend

HTML+JS, go

Database

Filesystem

User

Fig. 3. Overview of all components within the LINC system. The arrows denote the information flow.

[P1] Idea Management: Watch Our Ideas. This

platform was developed for Technische Universität Dresden

in the context of the Open4Innovation project [17]. The

backend is the Java-framework WildFly 13, which in turn is

providing a REST-API for a JavaScript frontend. Ideas are

always created as part of a board, which contains related

ideas. An idea consists of a description and artifacts like

images and documents. Access permissions can be given on a

group and user level. After an idea is created, it gives several

options to synchronize with other LINC-platforms: a new

Fridolean project is created if it not exists, synchronizing also

all access permissions of the idea. If a Fridolean project exists,

all existing canvases are listed on the idea-page. Similarly,

the synchronization works with Taiga and CodiMD.
An example, how viewing an idea within Watch our Ideas

looks like, can be seen in Fig. 4.

[P2] Canvas Management: Fridolean. Fridolean, was

initially developed by students as part of a mandatory

software development course at our university. Frontend and

backend are based on JavaScript, utilizing the libraries React

and Express with a MongoDB database. The platform

supports the creation of projects, which can contain multiple

canvases. The canvas editing supports multi user real-time

collaboration. The changes of one user are reflected on the

screen of all other users. This is an important feature, as

canvas editing is a highly collaborative task.

[P3] Task Management: Taiga. For the task management,

we utilize the open source software Taiga. The backend is

Python with the web-framework Django and a frontend

written in CoffeeScript. The decision for this platform was

mainly its support for all the different task management

methodologies. It supports SCRUM and Kanban [18] and

would even allow a waterfall model of issue management.

All these methodologies can be used and combined in a

single project.

[P4] Document Management: CodiMD. CodiMD is an

open source collaborative document editor. Each participant

gets its own cursor inside the document and each edit is

synchronized to all users. This platform is JavaScript based

in frontend and backend.

International Journal of Innovation, Management and Technology, Vol. 10, No. 4, August 2019

150

International Journal of Innovation, Management and Technology, Vol. 10, No. 4, August 2019

151

Fig. 4. Watch Our Ideas (P1): An idea management software. The image shows an idea with title, author, description and images. At the bottom the

connection to other LINC-components, such as Fridolean, can be seen.

[P5] Chat Platform: Rocket.Chat. As an open source

chat platform Rocket.Chat is used. Besides giving users the

possibility to chat with each other, it is also our portal for

important announcements and collection of error logs.

[R3] Health Monitor: Checkup. Important for the system

administration is the health monitor. This monitor will poll in

a specified period each deployed resource and warn the

administrator when a platform is not available. As solution

for this, we decided for Checkup. This open source tool

allows direct integration with our chat platform with

webhooks and therefore can give the administrator a timely

warning, when one of the system fails.

C. [R2] Synchronization

Integration of all systems is done with two key

technologies: single sign on with Keycloak and by utilizing

the REST API of all platforms. The best integrated platforms

are innovation (P1) and communication (P5). After creating

an idea, it is possible to generate a Fridolean and Taiga

project, as well as a document. This synchronization is

especially helpful for initializing the tools with a description

and to synchronize the access control across the platforms

(i.e., all collaborators of an idea are also added to the project

or document). The communication platform is also well

integrated, as some of the used open source tools already

support the generic webhook API.

D. [R3] Deployment

Deployment was of special interest because the integration

of so many different platforms make an easy deployment

difficult. Each platform requires different system

components which also sometimes contradict each other (e.g.,

conflicting database versions). Furthermore, innovation is

one of the most important goods a company possesses. These

companies will not follow the current trend to put these into

the cloud, so that a security breach would expose all their

future plans.
The solution must be some form of virtualization to

provide an isolated environment for each platform. A

lightweight virtualization technique are Linux containers

with the most popular implementation being Docker, which

is explained in the next section.

E. Docker

Docker is a popular container implementation for the

Linux kernel. Containers are a virtualization mechanism with

very small overhead. Besides sharing the kernel of the host

system, containers are isolated in most aspects from the host:

the processes run in a different namespace and filesystem

access is only granted at predefined points. Docker offers to

define containers based on a sequence of shell commands for

the installation. One fetches a base-image, on which

additional dependencies can be installed. This allows to

customize the desired image, so that it fits with all individual

applications.
Each Dockerfile should contain just one application. When

a service requires multiple applications (e.g. the service and a

database), one can use Docker-compose to structure these. A

Docker-compose file defines which container work together

and sets their environment variables, on which location of the

filesystem they can write and which ports to expose.

Deployment: The deployment of the LINC platform is

described in a single archive containing two Docker-compose

files for each service: one file for a default configuration and

one for the individualized configuration. Furthermore a

single. env-file is used to configure variables, which are

expanded within the Docker-compose files (e.g. ports,

usernames, passwords or other configurations).

Most services expect to be in the root of a domain:

therefore, a subdomain for each service is recommended. A

reverse-proxy, like Nginx or Apache2, is utilized. Some

platforms require some manual configuration on their

webpages: e.g., copying secrets from Keycloak or setting

some configurations. In a future version this will be

automated. The current setup time of a new server is ca. 30

minutes, but our goal is to minimize these actions further, so

that a reverse-proxy becomes self-configuring and that the

configurations can be extracted automatically. Furthermore,

the deployment should later support Kubernetes or

Docker-swarm, so that the services can be easily distributed

across a network of servers.

V. REFERENCE ARCHITECTURE: LINC AS SYSTEM OF

SYSTEMS (SOS)

In this chapter we want to take a closer look on the LINC

architecture in regards to SoS modelling. As mentioned in

Chapter IV, all 5 platforms of LINC were developed and

managed independently for their own valid purpose and

therefore holds property 1 and 2 of SoS, which are described

in Section III-C. These independent systems are brought

together to create a LINC SoS that enable us to perform lean

innovation management, which cannot be achieved by any of

the individual systems alone. This lean innovation is the

emergent behaviour achieved as a result of interaction of

constituent system of LINC and thus it adheres to the

property 3 of an SoS. In addition to the three critical

properties of SoS, LINC also fulfils the evolutionary

development and heterogeneity. Regarding the property 4 of

geographic distribution LINC may or may not be

geographically distributed. Property 5 describing an SoS in

constant evolution is true for our current implementation.

Property 6, the SoS consists of heterogeneous components is

definitely true for LINC, which consist of a many different

programming languages and frameworks.

A. Emergent Behavior, Ensemble Modelling and Dynamic

Workflows

Constituent systems in SoS can perform various tasks

since they are autonomous systems that can be used for

various purposes. SoS creates a dynamic context in which

constituent systems perform SoS specific tasks and

collaborate to exhibit desired emergent behaviour. An SoS

runs in a dynamic environment where the context and

requirements might change over time. In response to these

changes, the emergent behaviour must also adapt (adaptive)

to ensure continued valid operation. Emergent behaviour

might appear (or is created) in response to some

environmental change (transient) then it might grow i.e.,

more systems are added to SoS or shrink over time (elastic)
and is finally dissolved. Thus, emergent behaviour is a

dynamic context for constituent systems that has adaptable,

transient and elastic properties.

Ensembles [19], [20] are defined as group of components

that interact to achieve a certain goal. Notion of ensemble

used by [19] can be used to present the emergent behaviour

with elastic properties. Ensemble defines a membership

predicate that evaluates whether the system qualifies to be a

part of SoS or not. Therefore, systems can add or leave the

SoS. Another notion of dynamic context was defined in [21]

as emergent gummy modules that defines transient nature

by defining construction and destruction predicates. A

dynamic context is created in response to a construction

predicate qualifying to true and then it is removed when

destruction predicate is satisfied. To add the concept of

dynamic adaptation, architecture of ensemble can be

represented using adaptive Petri nets [13] that can be adapted

in response to changes.

Currently, no version of ensembles (dynamic contexts)

fulfil above mentioned properties. In our future work we plan

to develop a notion of ensembles that uses a construction /

destruction predicate to account for the transient nature, a

membership predicate to account for the elastic nature, an

adaptive petri net [13] for the adaptive nature

Since constituent systems are autonomous and perform a

variety of tasks. The tasks that constituent systems must

perform in the context of current SoS interaction is defined

by an ensemble in the form of role assignment [22].

Ensembles also define the interaction between the roles

necessary to carry out the task. Interaction between the

systems is event based to ensure loose coupling, distributed

nature and heterogeneity of an SoS. When architectural

configuration changes the role assignment and interaction

among the constituent systems change as well.

Dynamic workflows in LINC can be represented using the

concept of ensembles where a dynamic workflow can be

created on demand (user request), adapted to a certain context

and can eventually involve more and less platforms in

different roles depending on the context. Configuration of the

workflow may change as context changes.

International Journal of Innovation, Management and Technology, Vol. 10, No. 4, August 2019

152

Fig. 5. Reference architecture for an ensemble based LINC SoS.

B. Keycloak in SoS

Keycloak is responsible for authentication. With the

proposed architecture for LINC with ensembles, Keycloak

will be a part of construction predicate. Construction

predicates are evaluated before a dynamic workflow is

initiated. It checks whether all requirements are fulfilled or

not for starting the dynamic workflow. Before a workflow is

established the construction predicate with Keycloak can

check if the user who requested the workflow has the access

and has the right role to initiate the desired workflow.

C. Proposed Reference Architecture

We propose an event based architecture for ensemble

modelling for the LINC-SoS. Monitor component runs the

construction predicate with Keycloak. Adaptation manager

runs the context Petri nets [13] that generate the initial

configuration for ensemble. This configuration will be

updated as monitor receives further update events from the

queue indicating a change in the context. Each ensemble

(workflow) might not involve all the constituent systems, for

instance in Fig. 5, it involves only 3 components. Participants

of an ensemble communicate through a global event queue.

VI. EVALUATION

For developing the platform, we used the lean startup

methodology with the build—measure—learn cycle. Within

each iteration, we let users test our platform and incorporated

their feedback. Because of our small user-base, we mostly

evaluated the results on an individual basis. To attract enough

users, we conducted innovation competitions, utilized the

platforms ourselves and used it in teaching.

A. Innovation Competition

We performed two innovation competitions within the

IoSense Project (an EU ECSEL Project). The first

competition was used to evaluate our platform and invite

stakeholders of the project to generate new ideas in the area

of IoT. Central for this competition was the idea platform and

partially the canvas system. To attract a higher audience, the

best ideas could win prizes. As a result, more than 20 ideas

were entered within 2 months and we got 30 new

registrations. For some ideas a BMC (business model canvas)

was created in the canvas platform.

B. Project Management

Within our group at the university, we employ some parts

of the LINC-platform to support PhD students with

organizing the research projects and progress with their

dissertation and paper writing. After 8 month of use, the

platforms for task management, document management and

chat are utilized a lot. Every research project is now

documented inside the task management system, which

improved the quality of the research a lot. Publications are

often structured within the collaborative document editor.

Protocols for presentations are also often collaboratively

written within this tool. The chat platform unified other

(commercial) chat platform and most emails. It helped our

group to come closer together by an improved

communication.

C. Teaching

As of this writing, the platform is used in teaching the

Software as a Business course at Technische Universität

Dresden (Germany). Around 15 students are learning in this

course how to create a business from a software project. The

course is based on design thinking and Lean Innovation

principles. The course is divided in 50% lecture and 50%

practical work. During the lecture the students learn agile

project management and how to derive an MVP (minimum

viable product). Which then is practically used with the tasks

and canvas platform in LINC. Ideas, documents and chat are

also utilized for collaborative innovation. In the end of this

course, we let the students evaluate LINC with a

questionnaire.

VII. CONCLUSION AND OUTLOOK

We presented in this work a collaborative platform for lean

innovation. It is a generic solution, which supports various

innovation processes. It is targeted for innovation in small,

medium and large businesses as well as research and

technology organizations. Furthermore, this platform was

designed with the intent to teach students on the steps in lean

International Journal of Innovation, Management and Technology, Vol. 10, No. 4, August 2019

153

innovation. To reach the current state of the platform, we

reviewed existing innovation processes and analyzed them,

which software platforms and general requirements are

needed. Based on this, 5 platforms and 3 general

requirements were identified. The platforms were

instantiated with a system of systems architecture. Finally,

the suitability was evaluated with several user studies. While

each user study created new feature requests, the general

result was that this kind of system is highly required in

teaching as well as in industry and research. Future research

will go in two directions: improve the platforms teaching

capabilities with a better user-guidance concept based on

dynamic workflows; further improve the architecture to

allow better scaling to more easily integrate new platforms.

ACKNOWLEDGMENT

We gratefully acknowledge support from the German

Excellence Initiative via the Cluster of Excellence “Center

for advancing Electronics Dresden” (cfAED).

This project has received funding from the Electronic

Component Systems for European Leadership Joint

Undertaking under grant agreement No 692480. This Joint

Undertaking receives support from the European Union’s

Horizon 2020 research and innovation programme and

Germany, Netherlands, Spain, Austria, Belgium, Slovakia.”

REFERENCES

[1] C. Seja and J. Narten, Creative Communities / Ein Erfolgsinstrument
für Innovationen und Kundenbindung, Springer Gabler, 2017.

[2] A. Stocker, G. Granitzer, P. Hoefler, V. Pammer, R. Willfort, A. M.
Koeck, and K. Tochtermann, “Towards a framework for social web

platforms: The neurovation case,” in Proc. Third International Conf.

on Internet and Web Applications and Services, Athens, Greece, 2008,

pp. 227-232.

[3] M. Koch and F. Ott, “Idea Mirrors – Einsatz großer Wandbildschirme
zur Förderung diskontinuierlicher Innovation in der Softwarebranche,”

in Proc. Workshop Virtuelle Organisation und Neue Medien, Dresden,

Germany, 2008, pp. 241-252.
[4] T. Schoormann, D. Behrens, and R. Knackstedt, “Softwaregestützte

modellierung von Geschäftsmodellen – Vergleich und
Weiterentwicklungsperspektiven am Beispiel der business model

canvas,” Informatik 2016, Bonn, Germany, pp. 1333-1347, 2016.

[5] M. Oddoy, “Entwicklung eines frameworks für kollaboratives
systemdesign mit interaktiven, digitalen canvases,” Master thesis,

Dresden, Germany: Dept. Software Engineering, Technische
Universität Dresden, 2014.

[6] T. D. Pham, “Anforderungsanalyse und konzeption eines allgemeinen

modells für canvases,” Bachelor thesis, Dresden, Germany: Dept.
Software Engineering, Technische Universität Dresden, 2018.

[7] G. Schuh, M. Lenders, and S. Hieber, “Lean innovation–introducing
value systems to product development,” International Journal of

Innovation and Technology Management, vol. 8, no. 1, pp. 41-54,

2011.

[8] I. Rauth, B. Jobst, E. Köppen, and C. Meinel, “Design thinking: An

educational model,” in Proc. of the 1st International Conf. on Design
Creativity, 2010.

[9] M. Walter, M. Lohse, and S. Guzman, Platform innovation kit, 5 steps

to a new platform business model. [Online]. Available:
https://medium.com/platform-innovation-kit/in-5-steps-to-a-new-platf

orm-business-model-7660391cafdd

[10] R. Kaiser, G. Püschel, S. Götz, K. Kahle, and U. Aßmann, “Von der

software-dissertation zum lean startup,” Software-Engineering and
Management, Dresden, Germany, 2015.

[11] B. Vandenbosch, A. Saatcioglu, and S. Fay, “Idea management: A

systemic view,” Journal of Management Studies, vol. 43, no. 2, pp.

259-288, 2006.

[12] M. Voorhoeve and W. V. d. Aalst, “Ad-hoc workflow: Problems and
solutions,” in Proc. 8th International Conf. on Database and Expert

Systems Applications, 1997, pp. 36-40.
[13] C. Mai, R. Schöne, J. Mey, T. Kühn, and U. Aßmann, “Adaptive petri

nets – A petri net extension for reconfigurable structures,” in Proc. the

Tenth International Conf. on Adaptive and Self-Adaptive Systems and
Applications, Barcelona Spain, 2018, pp. 15-23.

[14] M. W. Maier, “The role of modeling and simulation in system of
systems development,” Modeling and Simulation Support for System of

Systems Engineering Applications, 2015.

[15] M. W. Maier, “Architecting principles for systems‐of‐systems,” Syst.

Engineering, vol. 1, pp. 267-284, 1998.

[16] D. DeLaurentis, “Understanding transportation as system-of-systems
design problem,” in Proc. 43rd AIAA Aerospace Sciences Meeting and

Exhibit, 2008.
[17] A. Graning and S. Rottger, “Innovationsforum Open4Innovation 2012

regional kooperativ-global innovativ,” Technical Reports Technische

Universität Dresden, 2012.
[18] K. Schwaber and M. Beedle “Agile software development with

Scrum,” Vol. 1. Upper Saddle River: Prentice Hall, 2002.
[19] J. Keznikl, T. Bures, F. Plasil, and M. Kit, “Towards dependable

emergent ensembles of components: The DEECo component model,”

in Proc. 2012 Joint Working IEEE/IFIP Conf. on Software
Architecture and European Conf. on Software Architecture, Helsinki,

2012, pp. 249-252.
[20] R. Hennicker and A. Klarl, “Foundations for ensemble modelling-the

helena approach,” Lecture Notes in Computer Science, vol. 8373,

Springer Berlin Heidelberg, pp. 359-381, 2014.
[21] S. Malakuti, “Programming with emergent gummy modules,” Trans.

Modularity and Composition, vol. 1, pp. 80-119, 2016.
[22] T. Kühn, M. Leuthäuser, S. Götz, C. Seidl, and U. Aßmann, “A

metamodel family for role-based modeling and programming

languages,” in Proc. International Conf. on Software Language
Engineering, Springer, Cham., 2014, pp. 141-160.

Carl Mai is a Ph.D student and research assistant at the Technical University

of Dresden. His research focuses on adaptive petri nets and model-driven

software development. Mai received his Dipl-Inf. from Technische
Universität Dresden.

Dominik Grzelak is a Ph.D student and research assistant at the Technische
Universität Dresden. His research interests include distributed computing

applications and bigraphs. Grzelak received a M.Sc. in computer science
from BTU Cottbus-Senftenberg.

Mariam Zia is a Ph.D student and research assistant at the Technische
Universität Dresden. Her research focuses on SoS and role oriented

programming. Zia received a M.Sc. in computer science from Technische
Universität Dresden.

Diana Lemme is a Ph.D student and research assistant at the Technical
University of Dresden. Her interests are on software ecosystems and

innovation processes. She received her Dipl-Inf. from Technische
Universität Dresden.

Uwe Aßmann is professor and dean of the Faculty of Computer Science at
the Technische Universität Dresden. He leads the software technology group.

His research interests lie in the area of software engineering, with emphasis
on model-driven development, software composition and component-based

software.

International Journal of Innovation, Management and Technology, Vol. 10, No. 4, August 2019

154

