
  

 
Abstract—Overall cost optimization of no-slump concrete 

(NSC) is investigated in this study. In this investigation, some 

restriction for the amount of compressive strength is considered 

and overall cost of concrete is minimized by designing mixture 

proportion. Cement, silica fume, water, fine aggregate, coarse 

aggregate and filler are the materials that are used in mentioned 

concrete. In this study, the purpose is to find the cheapest 

concrete that its compressive strength is 65 MPa. Genetic 

algorithm (GA) and particle swarm optimization algorithm 

(PSO) are used to find the best solutions. The results indicate 

that PSO introduced mixture proportion is 2% cheaper than 

that of GA. Also, running GA takes two times as much time as 

running PSO.   

  
Index Terms—Compressive strength, cost, genetic algorithm 

(GA), optimization, particle swarm optimization (PSO).  

 

I. INTRODUCTION 

The terms zero-slump concrete, no-slump concrete, and dry 

mix concrete generally refer to concrete of stiff or extremely 

dry consistency showing no measurable slump after removal 

of a conventional slump cone. In fact, so little water is used 

that the mixture of sand, gravel, and Portland cement does not 

fall down or "slump" at all. This condition is contrasted with 

the much higher water contents of normal concrete mixes, 

which usually range in slump from 75 to 200 mm (3 to 8 in.) 

[1]. this zero-slump concrete is widely used in impact-placed 

piles. A variation of zero-slump concrete is also used in 

precast concrete plants to form concrete pipes, culverts, 

hollow floor slabs, and concrete building blocks. In these 

precast applications the concrete placement technique often 

includes some form of vibratory compaction, a condition not 

usually associated with the placing of zero-slump piling 

concrete [1]. 

Compressive strength of concrete is a major and perhaps 

the most important mechanical property, which is usually 

measured after a standard curing of 28 days. Concrete 

strength is influenced by lots of factors like concrete 

ingredients, age, ratio of water to cementitious materials, etc 

[2]. So in designing concrete structures and concrete elements, 

minimum amount of compressive strength is defined and 

concretes have to achieve the suitable compressive strength 

after a standard curing of 28 days. 

According to ACI 318, the compressive strength is usually 

determined based on a standard uniaxial compression test 

performed 28 day after casting the concrete [3]. If the test 

results do not satisfy the required strength, costly remediation 
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efforts must be undertaken. Therefore, an accurate estimation 

of the compressive strength before the placement of concrete 

is very important. In recent years, prediction of the 

compressive strength of concrete has been an active area of 

research and different approaches have been proposed to 

estimate the compressive strength based on the mix 

proportions of different ingredients [4]. 

On the other hand, the cost is one of the most important 

criterion in projects and to improve the efficiency, cost of 

projects should be minimized and the quality should be 

maintained. Qualified structural design must satisfy required 

safety and minimum cost. Cost minimization is especially 

important for large-scale structures. Portland concrete girder 

bridges are generally large-scale constructions.  In fact, all 

bridge and structures projects are designed as minimum-cost 

in application. But, trial and error method is generally used to 

design the mixture proportion of minimum-cost bridge and 

build in application. Trial and error method requires 

preliminary study and experience. On the other hand, 

optimization methods give minimum-cost design exactly and 

directly in one step. This paper considers the economic 

profitability in the premise of ensuring the concrete’s 

compressive strength [5], [6]. 

 

II. LITERATURE REVIEW 

Many research works can be found in the literature that 

focused on the prediction of compressive strength and the 

optimization of cost. Jafar Sobhani predicted compressive 

strength of no-slump concrete by regression, neural network 

and ANFIS models [2]. Behrouz Ahmadi-Nedushan set An 

optimized instance based learning algorithm for estimation of 

compressive strength of concrete [4]. J.KARNI used 

regression model to predict compressive strength of concrete 

[7]. Zhe Yuan predicted the concrete compressive strength by 

Research on hybrid models genetic based algorithms and 

ANFIS [8]. Xiansong Xie designed a genetic algorithm 

optimization model to minimize cost of High-Performance 

Concrete [5]. Zekeriya Aydin minimized the Overall Cost of 

Pre-stressed Concrete Bridge and Genetic Algorithm was 

used in his investigation [6]. Kamal C. Sarma optimized the 

cost of concrete structures [9]. 

As it can be seen from the references above, the populity of 

cost and compressive strength optimization is dramatically 

increased.  

 

III. OPTIMIZATION MODEL 

The data and regression model are extracted from Jafar 

Sobhani article (2010). The initial mixture proportions are 
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presented on that article [2]. In this study, we investigate on 

the cost of no-slump concrete and the aim is to find optimal 

mixture design. Optimal mixture design refers to the most 

economical mixture that has enough compressive strength. In 

other words, the algorithms try to find the cheapest grade 65 

concrete. To improve the efficiency and to provide the model 

based on the real conditions, some constraints are added to 

this model. Compressive strength should be 65 MPa. To make 

the model feasible, 1MPa error is considered in compressive 

strength prediction, so compressive strength should be 

between 64 and 66 MPa. The volume of the mixture 

proportions are limited to 1m
3
. However, all the spaces in the 

concrete cannot be fill with materials because of small pores. 

Approximately pores are composed 2% of volume in 

concretes and volume of materials is considered 0.98m
3
 [10]. 

In order to change the model closer to data real situation, 

the amount of silica fume is considered between 4% and 8% 

of binder (cement and silica fume) weight. So, silica fume 

should be used more than 4% of binder weight, if it is used. 

The materials have various ranges. The weight of some 

materials in concrete are much greater than the others. The 

ranges of materials are presented in Table I. To unify the 

value of all materials in compressive strength prediction, all 

the inputs (materials) and output (compressive strength) are 

scaled between 0.1 and 0.9. So according to the equation (1) 

data are scaled [2]. 

 
𝑉𝑠=0.1 + 0.8 × (𝑉𝑟−𝑉𝑚𝑖𝑛) / (𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛)           (1) 

 

where 𝑉𝑠 is the scaled data, 𝑉𝑟 is the rough data, 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 

are the maximum and minimum rough data values 

respectively. 

The purpose of this investigation is to find the most 

economical grade 65 concrete. The cost function is calculated 

with the weight of ingredients and the unit cost them for 1m
3
. 

Sobhani [2] investigated on Prediction of the compressive 

strength based on regression models. He compared different 

types of regression models with R
2
 and RMSE coefficients 

and 2th polynomial regression was opted as the best model. 

His introduced function is used in this study to find the most 

economical grade 65 mixture proportion. The compressive 

strength function and cost functions are presented in equation 

(2) and equation (3) respectively. Also, the unit cost and 

specific gravity of materials for 1m
3
 can be seen in the Table 

II. 

 

𝑉𝑓′𝑐 =𝑎0 +𝑎1𝑉𝐶 + 𝑎2𝑉𝑆𝐹 + 𝑎3𝑉𝑊 + 𝑎4𝑉𝐹𝐴 + 𝑎5𝑉𝐶𝐴 + 𝑎6𝑉𝐹𝐼 + 

𝑎7𝑉𝐶
2
 + 𝑎8𝑉𝑆𝐹

2
 + 𝑎9𝑉𝑊

2
 + 𝑎10𝑉𝐹𝐴

2
 + 𝑎11𝑉𝐶𝐴

2
 + 𝑎12𝑉𝐹𝐼

2
           (2) 

 

where 𝑉𝑓′𝑐, 𝑉𝐶, 𝑉𝑆𝐹, 𝑉𝑊, 𝑉𝐹𝐴, 𝑉𝐶𝐴, and 𝑉𝐹𝐼 are the scaled value of 

compressive strength, cement, silica fume, water, fine 

aggregate, coarse aggregate, and filler respectively. And 𝑎0, 

𝑎1, …, 𝑎12 are the constant coefficients which represent on 

Table III.  

 

Minimize: 
 

 𝐶𝑜𝑠𝑡 = 𝑃C𝐶 + 𝑃𝑆𝐹𝑆𝐹 + 𝑃W𝑊 + 𝑃𝐹𝐴𝐹𝐴 +𝑃𝐶𝐴𝐶𝐴 + 𝑃𝐹𝐼𝐹𝐼 (3) 
 
where 𝑃C, 𝑃𝑆𝐹, 𝑃W, 𝑃𝐹𝐴, 𝑃𝐶𝐴, and 𝑃𝐹𝐼 are the unit price of 

cement, silica fume, water, fine aggregate, coarse aggregate, 

and filler in the order named; and C, SF, W, FA, CA, FI are 

the weight (Kg) of the cement, silica fume, water, fine 

aggregate, coarse aggregate, and filler in 1m
3
 concrete. The 

unit price of materials are presented in Table II. All the prices 

are announced in IRR which is Islamic Republic of Iran Rial 

(Iran currency). 
 

The optimal mixture compressive strength have to be 

65MPa. So, to find better mixtures and to improve the 

efficiency a small range [64], [66] is considered for 

compressive strength. In other words, the compressive 

strength has to be between 64 and 66 MPa. 

To compare two specific algorithms (GA and PSO), the 

population size and the number of iterations should be the 

same. So population size and number of iterations are 

considered 20 and 500 respectively. 

 
TABLE I: BOUNDARY RANGE OF INPUTS AND OUTPUT OF RECORDS [2]  

 

Inputs 

 

Range 

 

Minimum Maximum 

 

Cement (kg/m3) 

 

 

C 

 

252.6 

 

410 

Silica fume (kg/m3) SF 0 27.3 

Water (kg/m3) W 95 139.7 

Fine aggregate (kg/m3) FA 354.2 1300 

Coarse aggregate (kg/m3) CA 600 1440.6 

Filler (kg/m3) FI 0 188 

 

Output 

 

Range 

 

 Minimum Maximum 

 

28 days-Compressive Strength of 

no-slump concrete (MPa) 

 

 

50 

 

 

78 

 

 
TABLE II: THE UNIT COST AND SPECIFIC GRAVITY OF MATERIALS 

 

Materials 

 

Unit Cost 

(IRR/Kg) 

 

Specific gravity 

(Kg/m3) 

 

Cement 

 

1200 

 

3150 

Silica fume 7000 2250 

Water 150 1000 

 

Fine aggregate 

 

200 

 

2560 

Coarse aggregate 120 2530 
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Filler 

 

280 

 

2320 

TABLE III: THE CONSTANT COEFFICIENTS IN EQUATION (2) [2] 

 

Coefficient 

 

 

Amount 

a0 -3.665 

a1 1.563 

a2 -0.292 

a3 0.662 

a4 -1.72 

a5 8.627 

a6 -0.446 

a7 -1.013 

a8 0.736 

a9 -0.787 

a10 5.337 

a11 -5.198 

a12 0.703 

 

IV. GENETIC ALGORITHM (GA) 

Genetic algorithm is a heuristic algorithm based on 

Darwin’s natural selection theory [11]. It is an evolutionary 

algorithms which mimics the principles of biological 

evolution in nature. Variables of problem are encoded as 

chromosomes. According to the object function, 

chromosomes are firstly selected, then they overlap and 

mutate in an evolutionary process. After many times of 

evolution, the best individual will be found. Compared to 

other optimization method, GA has a good convergence and 

robustness. Under the same calculation accuracy, GA method 

takes much less time to find the optimal solution [12]. 

Genetic Algorithms has three operators namely selection, 

crossover, and mutation. In each iteration or generation, these 

operators are used on a population of all possible solutions, in 

order to develop their fitness function. Every solution is 

described by a string, and these strings are very much of the 

original chromosomes, hence it is named genetic algorithms. 

Initially, the population is randomly generated, and it 

continues until a terminating criterion is attained, e.g. the 

exceeding of a given limit of generations [13]. 

In this study, the real-coded genetic algorithm in MATLAB 

software 2016 was applied to find optimal mixture 

proportions of no-slump concrete. In this study, uniform 

crossover is used and for selecting genes are selected by 

Random selection, Tournament selection and Roulette wheel 

selection. In every selection, one of the selection processes 

above is selected randomly. 

Implementing the GA technique for the problem at hand 

involved five primary steps: (1) Setting the gene structure;   (2) 

deciding the gene evaluation criteria (objective function); (3) 

generating an initial population of genes; (4) selecting an 

offspring generation mechanism; and (5) coding the 

procedure in a computer program [14]. Flowchart of GA can 

be seen in Fig. 1.    

 

 
Fig. 1. Flowchart of genetic algorithm.  

 

V. PARTICLE SWARM OPTIMIZATION (PSO) 

In PSO, a number of simple entities (the particles) are 

placed in the search space of some problem or function, and 

each evaluates the objective function at its current location. 

Each particle then determines its movement through the 

search space by combining some aspect of the history of its 

own current and best (best-fitness) locations with those of one 

or more members of the swarm, with some random 

perturbations. The next iteration takes place after all particles 

have been moved. Eventually the swarm as a whole, like a 

flock of birds collectively foraging for food, is likely to move 

close to an optimum of the fitness function. Each individual in 

the particle swarm is composed of three D-dimensional 

vectors, where D is the dimensionality of the search space. 

These are the current position xi, the previous best position pi, 

and the velocity 𝑉𝑖. 

The current position 𝑋𝑖 can be considered as a set of 

coordinates describing a point in space. On each iteration of 

the algorithm, the current position is evaluated as a problem 

solution. If that position is better than any that has been found 

so far, then the coordinates are stored in the second vector, 𝑃𝑖. 

The value of the best function result so far is stored in a 

variable that can be called 𝑃best𝑖 (for “previous best”), for 

comparison on later iterations. The objective, of course, is to 

keep finding better positions and updating 𝑃𝑖 and 𝑃best𝑖. New 
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points are chosen by adding 𝑉𝑖 coordinates to 𝑋𝑖, and the 

algorithm operates by adjusting 𝑉𝑖, which can effectively be 

seen as a step size. 

 

 
Fig. 2. Flowchart of particle swarm optimization 

 

In this paper, first a population array of particles with 

random positions are initialized and velocities on D 

dimensions in the search space. Then desired optimization 

fitness functions (Cost and Compressive strength) are 

evaluated for each particle in D variables. In the next step, the 

fitness value of particles are compared with their 𝑃best𝑖. If 

current value is better than 𝑃best𝑖, algorithm sets the 𝑃best𝑖 
equal to the current value, and 𝑃𝑖 equal to the current location 

𝑋𝑖 in D-dimensional space. Afterward, the particle in the 

neighborhood with the best success so far is identified, and its 

index is assigned to the variable 𝐺. Then the velocity and 

position of the particle are changed according to the (4) and (5) 

equations. This loop continues until the maximum number of 

iterations is happened [16]. 

 

𝑉𝑖(𝑡+1) = 𝑊𝑉𝑖(𝑡) + 𝑐1𝑟1[𝑃𝑖(𝑡)−𝑋𝑖(𝑡)] + 𝑐2𝑟2[𝐺𝑖(𝑡)−𝑋𝑖(𝑡)]    (4) 

 
𝑋𝑖(𝑡+1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡+1)                                (5) 

 

The index of the particle is represented by 𝑖. Thus 𝑉𝑖(𝑡) is 

the velocity of particle 𝑖 at any time 𝑡 and Xi(t) is the position 

of particle 𝑖 at time t. 𝑐1 and 𝑐2 are two positive constants [17]. 

𝑟1 and 𝑟2 are two random functions in the range [0, 1]. 𝑊 is a 

positive coefficient and it is gradually reducing. By reducing 

the amount of 𝑊, the effect of initial point is decreased 

steadily and algorithm concentrates on the better points. 

 

VI. RESULTS AND DISCUSSIONS 

 
TABLE IV: THE OPTIMAL MIXTURE PROPORTIONS 

 

Optimal mixture proportions 

 

Unit 

 

GA 

 

PSO 

 

Cement 

 

Kg/m3 

 

255.3 

 

252.6 

Silica fume Kg/m3 0 0 

Water Kg/m3 103.55 108.01 

Fine aggregate Kg/m3 1249.74 1156.32 

Coarse aggregate Kg/m3 811.61 

 

858.58 

 

Filler Kg/m3 0 0 

 
Is this study, mixture proportion of no-slump concrete is 

designed. The purpose is to find the cheapest mixture 

proportion which has 65MPa [64-66] compressive strength. 

GA and PSO are used in this optimization. To compare GA 

and PSO, the situations for two algorithms ought to be the 

same. So for both algorithms, the number of population and 

number of iterations are considered 20 and 500 respectively. 

Each algorithm runs 50times, and the cheapest mixture 

proportions grade 65 no-slump concrete are reported in Table 

IV.  

For comparison of two algorithms running time is one of 

the most important criteria. Because faster algorithm let us to 

achieve the best solutions in fewer time. Hence, the average 

running time of two algorithms for each run, and cost of 

optimal mixtures are presented in Table V. 

Also convergence history of cost according to the iterations 

is presented in Fig. 3. 
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Fig. 3. Convergence history of cost.  

TABLE V: COST OF OPTIMAL MIXTURES AND AVERAGE RUN TIME OF 

ALGORITHMS 

 

Optimal mixture 

proportions 

 

Unit 

 

GA 

 

PSO 

 

Average run time 

 

Second 

 

0.8013 

 

0.4081 

 

 

Cost 

 

Iran Rial 

(IRR) 

 

637292.4864 

 

629793.6887 

 
VII. CONCLUSION 

In this paper, Genetic algorithm and Particle swarm 

optimization are used to design the most economical mixture 

proportion of no-slump concrete. The compressive strength is 

considered 65MPa and the algorithms minimized the cost by 

finding the ideal amount of material in 1m
3
 concrete. 

The following conclusions can be drawn from the results of 

this study:  
 

 In this model, PSO is better than GA, because it finds 

better solution. PSO introduced mixture proportion is 

cheaper than GA introduced mixture. According to 

equations which were introduced in Sobhani [2] 

investigation, both mixtures compressive strength is 

65MPa. 

 PSO is a faster algorithm in this optimization. GA 

average running time takes about 0.8 second. However 

PSO average running time is 0.4 second. So, 

approximately running GA takes two times more than 

running PSO. 

 Using heuristic algorithms can help to find optimal or 

near optimal solutions. In this case by virtue of these 

algorithms, cost of making concrete is dramatically 

reduced. However, finding the most economical mixture 

proportions with experimental work needs lots of money, 

time, and energy. 
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