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Abstract— Software system should be reliable and available 

failing which huge losses may incur. To achieve these objectives 
a thorough testing is required. Adequacy of test cases is the key 
to the success. This paper presents the study of optimization of 
software testing techniques by using Genetic Algorithms (GAs) 
and specification based testing. Some new categories of genetic 
codes are applied in some problem optimizations for the 
generation of reliable software test cases based on the 
specification of the software. These GAs have found their 
application in detecting errors in the software packages. Based 
on new genetic strategy and GAs symmetric code is developed. 
In the current paper, some key definitions of genetic 
transformation have been used viz. crossover, mutation and 
selection. Some of our research shows that genetic techniques 
have very important influence on the performance of software 
test cases.  

 
Index Terms— Genetic Algorithms, optimization, 

specification based software testing, soft computation  
 

I. INTRODUCTION 
  Genetic Algorithms have been introduced in the sixties by 
Professor John Holland at university of Michigan as models 
of an Artificial Evolution [1, 2]. In the thirty past years, they 
have been successfully applied to a wide range of problems 
such as Natural Systems Modeling (e.g. Artificial Life 
environments, immune system modeling [2, 3], Machine 
Learning systems, and optimization. GAs handle a 
population of individual (chromosomes) often modeled by 
vector of binary genes. Each one encodes a potential solution 
to the problem and so-called fitness value, which is directly 
correlated to how good it is to solve the problem.  In general, 
the basic approaches are to test software consists of using 
formal specifications to design an application. This approach 
is very strict but unfortunately not often used because the 
breadth of formal specification methods does not encompass 
all the functionality needed in today’s complex applications. 
The second approach consists of doing test as part of the 
traditional engineering models (e.g. waterfall, spiral, 
prototyping) that have a specific phase for testing generally 
occurring after the application has been implemented. The 
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modifications to these traditional models have being 
incorporating testing in every phase of the software 
development with methodologies such as extreme 
programming [4] used in the implementation of Windows XP. 
Despite all the claims, the truth here is that current 
approaches are insufficient to test software appropriately, 
thus causing the status of the field, which clearly seems to be 
loosing the battle of providing users with reliable software. It 
has been noticed that complete reliability is hard to achieve in 
empirical approaches to complete testing is impossible. This 
does not mean that a good set representing the full space of 
possible tests cannot be automatically generated thus 
reducing the cost of software development [5, 6].  

Therefore, in the present paper, an attempt has been made 
to describe the basic nature of existing genetic 
transformations used for software testing and their related 
scenarios and applications for generating the efficient 
software test cases. Keeping in mind the above-mentioned 
requirement, we have been engaged in a number of activities 
involving study of software testing, genetic algorithms by 
using practical and theoretical analysis. Efforts has been 
made to understand the problem, and develop the 
corresponding high-level modules in C++ by using 
MATLAB version 7.0 tools and libraries provided by the 
language using the basic parameters of genetic algorithms for 
the generation of reliable and cost effective test cases. This 
paper is organized into three parts: part I describes the 
functionality of GAs, part II presents the usage of GAs in 
specification based software testing to the alternatives of 
existing software testing techniques, part III discusses the 
implementation of GAs using MATLAB for the generation 
of optimized test cases. 

II. APPROACH USED FOR GENETIC ALGORITHMS 
GA is a search technique used to find exact or approximate 

solutions to optimization and search problems. GAs 
represents a class of adaptive search techniques & procedures 
based on the processes of natural genetics & Darwin's 
principal of the survival of the fittest. There is a randomized 
exchange of structured information among a population of 
artificial chromosomes. When gas are used to solve 
optimizations problems, good results are obtained 
surprisingly quickly. A problem is defined as maximization 
of a function of the kind f(x1, x2, ... xm) where (x1, x2, ..., 
xm) are variables which have to be adjusted towards a global 
optimum. Three basic operators responsible for GA are (a) 
selection, (b) crossover & (c) mutation. Crossover performs 
recombination of different solutions to ensure that the genetic 
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information of a child life is made up of the genes from each 
parent.  

 
Figure 1: information flow for the GA steps 

GAs differentiated from other conventional techniques due 
to: (i) GA a representation for the sample population must be 
derived; (ii) GAs manipulates directly the encoded 
representation of variables, rather than manipulation of the 
variables themselves; (iii) GAs use stochastic rather then 
deterministic operators; (iv) GAs search blindly by sampling 
& ignoring all information except the outcome of the sample; 
(v)GAs search from a population of points rather than from a 
single point; thus reducing the probability of being stuck at a 
local optimum, which make them suitable for parallel 
processing. In the context of software testing, the basic idea is 
to search the domain for input variables, which satisfy the 
goal of testing.  

III. TEST CASE GENERATION USING GENETIC ALGORITHMS  
In this, implementation of genetic algorithm using 

MATLAB software has been dealt.  Given the versatility of 
MATLAB’s high-level language, problems can be coded in 
m-files in a fraction of the time that it would take to create c 
or FORTRAN programs for the same purpose. Couple this 
with MATLAB’s advanced data analysis, visualization tools 
and special purposes application domain toolbox and the user 
is presented with a uniform environment with which to 
explore the potential of genetic algorithms. The genetic 
algorithm GUI toolbox plays a major role for obtaining 
optimized solution and best fitness value. GA’s also require 
that a number of parameters be set. The first one is the 
population size. It has an impact on the speed of the GA 
convergence towards a near optimal solution and its 
capability to avoid local optima. Larger population sizes 
increase the amount of variation present in the initial 
population at the expense of requiring more cost function 
evaluations and longer execution times. Typical population 
sizes in the literature range between 25 and 100. As a 
heuristic, having a population size of two or three times the 
number of classes should be sufficient. Mutation prevents the 
GA search to fall into local optima, but they should not 
happen too often or the search will converge towards a 

random search. The mutation rate is defined as the 
probability for a chromosome to undergo a mutation. The 
algorithms presented in this paper have been implemented on 
MATLAB version 7.0 for the generation of optimized test 
cases using gas. These algorithms have been tested 
extensively with different test inputs containing many special 
cases, including random testing and testing based on 
specification of software as shown in fig 2. 

 
Figure2. Shows the generation of test cases 

With the above defined, GA is defined as follows:  
Procedure GA(φ, θ, n, r, m) 
// φ is the fitness function for ranking individuals 
// θ is the fitness threshold, which is used to determine when 
to halt 
// n is the population size in each generation (e.g., 100) 
// r is the fraction of the population generated by crossover 
(e.g., 0.6) 
// m is the mutation rate (e.g., 0.001) 
P: = generate n individuals at random 
// initial generation is generated randomly 
while max (φ (hi)) < θ  do 
//define the next generation S (also of size n) 
Reproduction step: Probabilistically select (1-r) n individuals 
of P and add them to S, where the probability of selecting 
individual hi is   
Prob(hi)= φ (hi) / ∑( φ (hj)) 
Crossover step: Probabilistically select r*n/2 pairs of 
individuals from P according to Prob (hi) 
For each pair (h1, h2), produce two offspring by applying the 
crossover operator and add these offspring to S 
Mutate step: Choose m% of S and randomly invert one bit in 
each 
P: = S 
End while 
Find b such that φ (b) = max (φ (hi)) 
Return (b) 

End proc 

IV. CONSIDERATION FOR TEST CASE GENERATION 
In order to make the experiment realistic, an attempt was 

made to choose an application that would normally be a 
candidate for the inclusion of fault tolerance. The problem 
that was selected for programming is a simple and realistic 
data structure largest number system. Program read some 
data that represents as test cases an array (integer or float). To 
check the efficiency of system and the completeness of the 
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test set, tests are performed by introducing the mutant in the 
software. This program was originally written in MATLAB, 
and the program has been subjected to several thousands test 
cases.  

Assumptions made are as under: 
A. Encoding  
Direct value encoding can be used in problems where some 

more complicated values such as real numbers are used. In 
the value encoding, every chromosome is a sequence of some 
values. Values can be anything connected to the problem, 
such as (real) numbers, chars or any objects. 

B. Selection 
From a population of individuals, we wish to give the fitter 

individuals a better chance to survive to the next generation. 
We do not want to use the simple criterion "keep the best n 
individuals." It turns out nature does not kill all the unfit 
genes. They usually become recessive for a long period. Then 
they may mutate to something useful. Therefore, there is a 
tradeoff for better individuals and diversity.  The individuals 
are selected according to Rank selection criteria.  Rank 
selection ranks the population first and then every 
chromosome receives fitness value determined by this 
ranking. The worst will have the fitness 1, the second worst 2 
etc. and the best will have fitness N (number of chromosomes 
in population). 

C. Crossover  
Two-point crossover - two crossover points are selected, 

binary string from the beginning of the chromosome to the 
first crossover point is copied from the first parent, the part 
from the first to the second crossover point is copied from the 
other parent and the rest is copied from the first parent again  

D. Mutation  
Randomly change one or more digits in the string 

representing an individual. 

V. RESULTS 
For the test case generation, the following figure 3 has 

been designed, which consists of program P1 (as black box) 
having multiple input and one output variables.  

 
 
 
 
 
 
 

Figure 3: Illustrates the program P1 to find largest number. 
Test data for inputs can be defined in terms of 

preconditions that describe valid and invalid data values for 
each input. These preconditions may be determined from 
several sources, including the program's specification and the 
constraints of the computing environment. To create a test set, 
it applies to black-box test data selection criteria (such as 
equivalence-class partitioning) to each input variable with 
respect to the preconditions. After applying test selection 
criteria to each variable, we will have a set of test data values 
for each of the input variables. Since program p1 has multiple 
input variables, we must now consider how to test 
combinations of program inputs. The most thorough 
approach is to test every possible combination of the selected 

test data values using GAs. In fact, in a more elaborate use of 
GAs, the data itself updated in a feedback loop based on the 
result of the execution of the test plan. 

The program has been tested extensively with different test 
inputs containing many special cases, including random 
testing and testing based on specification of software.  

Figure 4 depicts the distance between individual, as the 
numbers of generations increases, the distance between the 
individual are decreases to zero. 

 

 
Figure 4: depict the Average distance between individuals. 

The figure 5 shows the results generated by the MATLAB 
for the software under test after inserting mutation in the 
software. The value differs from the specification (expected 
value) of the software is depict as error.  

Figure 6 shows the graph, which describes the errors 
detected in the software under test 

 
Figure 5 shows the output generated by MATLAB 
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Figure 6: highlights the error detected vs. generation 
These results are the focus for the software i.e. the software 

is mainly designed to process the optimization of test cases 
using GAs. 

VI. CONCLUSION 
Genetic Algorithms are easy to apply to a wide range of 

optimization problems, like the traveling salesperson 
problem, inductive concept learning, scheduling, and layout 
problems. Software testing is also an optimization problem 
with the objective that the efforts consumed should be 
minimized and the number of faults detected should be 
maximized. Software testing is considered most effort 
consuming activity in the software development. Although a 
number of testing techniques and adequacy criteria have been 
suggested in the literature but it has been observed that no 
technique/criteria is sufficient enough to ensure the delivery 
of fault free software consequential to the need of automatic 
test case generation to minimize the cost of testing. The 
simulation shows that the proposed GAs with the 
specification can find solutions with better quality in shorter 
time. The developer uses this information to search, locate, 
and segregate the faults that caused the failures. While each 
of these areas for future consideration could be further 
investigated with respect to applicability for software testing, 
as demonstrated by the examples of this paper, the simple 
genetic algorithm approach presented in this paper provides 
in itself a useful contribution to the selection of test cases and 
a focused examination of test results.  
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