
International Journal of Innovation, Management and Technology, Vol. 1, No. 1, April 2010
ISSN: 2010-0248

43

Abstract— Software system should be reliable and available

failing which huge losses may incur. To achieve these objectives
a thorough testing is required. Adequacy of test cases is the key
to the success. This paper presents the study of optimization of
software testing techniques by using Genetic Algorithms (GAs)
and specification based testing. Some new categories of genetic
codes are applied in some problem optimizations for the
generation of reliable software test cases based on the
specification of the software. These GAs have found their
application in detecting errors in the software packages. Based
on new genetic strategy and GAs symmetric code is developed.
In the current paper, some key definitions of genetic
transformation have been used viz. crossover, mutation and
selection. Some of our research shows that genetic techniques
have very important influence on the performance of software
test cases.

Index Terms— Genetic Algorithms, optimization,

specification based software testing, soft computation

I. INTRODUCTION
 Genetic Algorithms have been introduced in the sixties by
Professor John Holland at university of Michigan as models
of an Artificial Evolution [1, 2]. In the thirty past years, they
have been successfully applied to a wide range of problems
such as Natural Systems Modeling (e.g. Artificial Life
environments, immune system modeling [2, 3], Machine
Learning systems, and optimization. GAs handle a
population of individual (chromosomes) often modeled by
vector of binary genes. Each one encodes a potential solution
to the problem and so-called fitness value, which is directly
correlated to how good it is to solve the problem. In general,
the basic approaches are to test software consists of using
formal specifications to design an application. This approach
is very strict but unfortunately not often used because the
breadth of formal specification methods does not encompass
all the functionality needed in today’s complex applications.
The second approach consists of doing test as part of the
traditional engineering models (e.g. waterfall, spiral,
prototyping) that have a specific phase for testing generally
occurring after the application has been implemented. The

Manuscript revised feburary2, 2010.
Kulvinder Singh is with Department of Computer Science and

Engineering, University Institute of Engineering & Technology (U.I.E.T),
Kurukshetra University, Kurukshetra (K.U.K), India- 136 119 (Phone:
+91-94162-24353, E-mail: kshanda@rediffmail.com).

Rakesh Kumar is with the Department of Computer Science and
Applications (D.C.S.A), Kurukshetra University, Kurukshetra (K.U.K),
India- 136 119(Phone: +91-98963-36145; e-mail: rsagwal@rediffmail.com)

modifications to these traditional models have being
incorporating testing in every phase of the software
development with methodologies such as extreme
programming [4] used in the implementation of Windows XP.
Despite all the claims, the truth here is that current
approaches are insufficient to test software appropriately,
thus causing the status of the field, which clearly seems to be
loosing the battle of providing users with reliable software. It
has been noticed that complete reliability is hard to achieve in
empirical approaches to complete testing is impossible. This
does not mean that a good set representing the full space of
possible tests cannot be automatically generated thus
reducing the cost of software development [5, 6].

Therefore, in the present paper, an attempt has been made
to describe the basic nature of existing genetic
transformations used for software testing and their related
scenarios and applications for generating the efficient
software test cases. Keeping in mind the above-mentioned
requirement, we have been engaged in a number of activities
involving study of software testing, genetic algorithms by
using practical and theoretical analysis. Efforts has been
made to understand the problem, and develop the
corresponding high-level modules in C++ by using
MATLAB version 7.0 tools and libraries provided by the
language using the basic parameters of genetic algorithms for
the generation of reliable and cost effective test cases. This
paper is organized into three parts: part I describes the
functionality of GAs, part II presents the usage of GAs in
specification based software testing to the alternatives of
existing software testing techniques, part III discusses the
implementation of GAs using MATLAB for the generation
of optimized test cases.

II. APPROACH USED FOR GENETIC ALGORITHMS
GA is a search technique used to find exact or approximate

solutions to optimization and search problems. GAs
represents a class of adaptive search techniques & procedures
based on the processes of natural genetics & Darwin's
principal of the survival of the fittest. There is a randomized
exchange of structured information among a population of
artificial chromosomes. When gas are used to solve
optimizations problems, good results are obtained
surprisingly quickly. A problem is defined as maximization
of a function of the kind f(x1, x2, ... xm) where (x1, x2, ...,
xm) are variables which have to be adjusted towards a global
optimum. Three basic operators responsible for GA are (a)
selection, (b) crossover & (c) mutation. Crossover performs
recombination of different solutions to ensure that the genetic

Optimization of Functional Testing using
Genetic Algorithms

Kulvinder Singh and Rakesh Kumar

mailto:kshanda@rediffmail.com
mailto:rsagwal@rediffmail.com

International Journal of Innovation, Management and Technology, Vol. 1, No. 1, April 2010
ISSN: 2010-0248

44

information of a child life is made up of the genes from each
parent.

Figure 1: information flow for the GA steps

GAs differentiated from other conventional techniques due
to: (i) GA a representation for the sample population must be
derived; (ii) GAs manipulates directly the encoded
representation of variables, rather than manipulation of the
variables themselves; (iii) GAs use stochastic rather then
deterministic operators; (iv) GAs search blindly by sampling
& ignoring all information except the outcome of the sample;
(v)GAs search from a population of points rather than from a
single point; thus reducing the probability of being stuck at a
local optimum, which make them suitable for parallel
processing. In the context of software testing, the basic idea is
to search the domain for input variables, which satisfy the
goal of testing.

III. TEST CASE GENERATION USING GENETIC ALGORITHMS
In this, implementation of genetic algorithm using

MATLAB software has been dealt. Given the versatility of
MATLAB’s high-level language, problems can be coded in
m-files in a fraction of the time that it would take to create c
or FORTRAN programs for the same purpose. Couple this
with MATLAB’s advanced data analysis, visualization tools
and special purposes application domain toolbox and the user
is presented with a uniform environment with which to
explore the potential of genetic algorithms. The genetic
algorithm GUI toolbox plays a major role for obtaining
optimized solution and best fitness value. GA’s also require
that a number of parameters be set. The first one is the
population size. It has an impact on the speed of the GA
convergence towards a near optimal solution and its
capability to avoid local optima. Larger population sizes
increase the amount of variation present in the initial
population at the expense of requiring more cost function
evaluations and longer execution times. Typical population
sizes in the literature range between 25 and 100. As a
heuristic, having a population size of two or three times the
number of classes should be sufficient. Mutation prevents the
GA search to fall into local optima, but they should not
happen too often or the search will converge towards a

random search. The mutation rate is defined as the
probability for a chromosome to undergo a mutation. The
algorithms presented in this paper have been implemented on
MATLAB version 7.0 for the generation of optimized test
cases using gas. These algorithms have been tested
extensively with different test inputs containing many special
cases, including random testing and testing based on
specification of software as shown in fig 2.

Figure2. Shows the generation of test cases

With the above defined, GA is defined as follows:
Procedure GA(φ, θ, n, r, m)
// φ is the fitness function for ranking individuals
// θ is the fitness threshold, which is used to determine when
to halt
// n is the population size in each generation (e.g., 100)
// r is the fraction of the population generated by crossover
(e.g., 0.6)
// m is the mutation rate (e.g., 0.001)
P: = generate n individuals at random
// initial generation is generated randomly
while max (φ (hi)) < θ do
//define the next generation S (also of size n)
Reproduction step: Probabilistically select (1-r) n individuals
of P and add them to S, where the probability of selecting
individual hi is
Prob(hi)= φ (hi) / ∑(φ (hj))
Crossover step: Probabilistically select r*n/2 pairs of
individuals from P according to Prob (hi)
For each pair (h1, h2), produce two offspring by applying the
crossover operator and add these offspring to S
Mutate step: Choose m% of S and randomly invert one bit in
each
P: = S
End while
Find b such that φ (b) = max (φ (hi))
Return (b)

End proc

IV. CONSIDERATION FOR TEST CASE GENERATION
In order to make the experiment realistic, an attempt was

made to choose an application that would normally be a
candidate for the inclusion of fault tolerance. The problem
that was selected for programming is a simple and realistic
data structure largest number system. Program read some
data that represents as test cases an array (integer or float). To
check the efficiency of system and the completeness of the

International Journal of Innovation, Management and Technology, Vol. 1, No. 1, April 2010
ISSN: 2010-0248

45

test set, tests are performed by introducing the mutant in the
software. This program was originally written in MATLAB,
and the program has been subjected to several thousands test
cases.

Assumptions made are as under:
A. Encoding
Direct value encoding can be used in problems where some

more complicated values such as real numbers are used. In
the value encoding, every chromosome is a sequence of some
values. Values can be anything connected to the problem,
such as (real) numbers, chars or any objects.

B. Selection
From a population of individuals, we wish to give the fitter

individuals a better chance to survive to the next generation.
We do not want to use the simple criterion "keep the best n
individuals." It turns out nature does not kill all the unfit
genes. They usually become recessive for a long period. Then
they may mutate to something useful. Therefore, there is a
tradeoff for better individuals and diversity. The individuals
are selected according to Rank selection criteria. Rank
selection ranks the population first and then every
chromosome receives fitness value determined by this
ranking. The worst will have the fitness 1, the second worst 2
etc. and the best will have fitness N (number of chromosomes
in population).

C. Crossover
Two-point crossover - two crossover points are selected,

binary string from the beginning of the chromosome to the
first crossover point is copied from the first parent, the part
from the first to the second crossover point is copied from the
other parent and the rest is copied from the first parent again

D. Mutation
Randomly change one or more digits in the string

representing an individual.

V. RESULTS
For the test case generation, the following figure 3 has

been designed, which consists of program P1 (as black box)
having multiple input and one output variables.

Figure 3: Illustrates the program P1 to find largest number.
Test data for inputs can be defined in terms of

preconditions that describe valid and invalid data values for
each input. These preconditions may be determined from
several sources, including the program's specification and the
constraints of the computing environment. To create a test set,
it applies to black-box test data selection criteria (such as
equivalence-class partitioning) to each input variable with
respect to the preconditions. After applying test selection
criteria to each variable, we will have a set of test data values
for each of the input variables. Since program p1 has multiple
input variables, we must now consider how to test
combinations of program inputs. The most thorough
approach is to test every possible combination of the selected

test data values using GAs. In fact, in a more elaborate use of
GAs, the data itself updated in a feedback loop based on the
result of the execution of the test plan.

The program has been tested extensively with different test
inputs containing many special cases, including random
testing and testing based on specification of software.

Figure 4 depicts the distance between individual, as the
numbers of generations increases, the distance between the
individual are decreases to zero.

Figure 4: depict the Average distance between individuals.

The figure 5 shows the results generated by the MATLAB
for the software under test after inserting mutation in the
software. The value differs from the specification (expected
value) of the software is depict as error.

Figure 6 shows the graph, which describes the errors
detected in the software under test

Figure 5 shows the output generated by MATLAB

A

B

C

Program to find
largest number

Largest
number

International Journal of Innovation, Management and Technology, Vol. 1, No. 1, April 2010
ISSN: 2010-0248

46

Figure 6: highlights the error detected vs. generation
These results are the focus for the software i.e. the software

is mainly designed to process the optimization of test cases
using GAs.

VI. CONCLUSION
Genetic Algorithms are easy to apply to a wide range of

optimization problems, like the traveling salesperson
problem, inductive concept learning, scheduling, and layout
problems. Software testing is also an optimization problem
with the objective that the efforts consumed should be
minimized and the number of faults detected should be
maximized. Software testing is considered most effort
consuming activity in the software development. Although a
number of testing techniques and adequacy criteria have been
suggested in the literature but it has been observed that no
technique/criteria is sufficient enough to ensure the delivery
of fault free software consequential to the need of automatic
test case generation to minimize the cost of testing. The
simulation shows that the proposed GAs with the
specification can find solutions with better quality in shorter
time. The developer uses this information to search, locate,
and segregate the faults that caused the failures. While each
of these areas for future consideration could be further
investigated with respect to applicability for software testing,
as demonstrated by the examples of this paper, the simple
genetic algorithm approach presented in this paper provides
in itself a useful contribution to the selection of test cases and
a focused examination of test results.

ACKNOWLEDGMENT
A major part of the research reported in this paper is

carried out at U.I.E.T, and D.C.S.A, K.U.K, Haryana, India.
We are highly indebted and credited by gracious help from
the Ernet section of K.U.K for their constant support and help
while testing our proposed models on to different systems.

REFERENCES
[1] D.E. Goldberg, Genetic Learning in optimization, search and machine

learning. Addisson Wesley, 1994.
[2] J.J. Grefenstette. Genetic algorithms for changing environments. In R.

Manner abd B. Manderick, editor, Parallel Problem Solving from
Nature 2, pages 465-501. Elsevier Science Publishers .

[3] P. D’haeseleer, S. Forrest, and P. Helman. An immunological approach
to change detection: algorithms, analysis and implications. In
Proceedings of the 1996 IEEE Symposium on Computer Security and
Privacy, 1996.

[4] C. E. Williams. Software testing and uml. In Proceedings of the 10th
International Symposium on Software Reliability Engineering, Boca
Raton, Florida, Nov. 1999. IEEE Press.

[5] A. Watkins, The automatic generation of test data using genetic
algorithms, Proceedings of the 4th Software Quality Conference, vol. 2,
1995, pp. 300–309.

[6] J. Wegener, K. Buhr, H. Pohlheim, Automatic Test Data Generation
For Structural Testing of Embedded Software Systems by
Evolutionary Testing. GECCO, 2002, pp. 1233–1240.

[7] John Hunt, Testing Control Software using a Genetic Algorithm, Engg
Appl. Artif. lntell. Vol. 8, No. 6, pp. 671-680, 1995, Elsevier Science
Ltd.

[8] F. Vavak and T.C. Fogarty. A comparative study of steady state and
generational genetic algorithms for use in nonstationary environments.
In Proceedings of the Society for the Study ofArtificial Intelligence and
Simulation of Behavior, workshop on Evolutionnary Computation’96,
pages 301-307. University of Sussex, 1996.

[9] J. J. Grefenstette, et al, "Genetic algorithm for the Traveling salesman
problem", in Proc. Int. Conf. Genetic Algorithms and Their
Applications, July 1985, pp. 160-168

[10] A. Kenneth, D. Jong, et al, "Using Genetic Algorithms to solve
NP-complete Problems", Intl. Conf 3rd. Genetic Algorithms and Their
Applications. 1989, pp. 124-132.

[11] D. Berndt, J. Fisher, L. Johnson, J. Pinglikar, and A. Watkins. Breeding
software test cases with genetic algorithms. In HICSS ’03: Proceedings
of the 36th Annual Hawaii International Conference on System
Sciences (HICSS’03), pages 338–347, Washington, DC, USA, 2003.
IEEE Computer Society.

