

Abstract—Business Intelligence (BI) becomes an essential

element in decision making system. BI provides decision

making information for strategic and tactical users.

Operational Business Intelligence (Operational BI) is an

extension of BI functionality into operational level of the

business. Thus, Operational BI provides decision making

information not only strategic and tactical users but also

operational users. The characteristics of Operational BI system

is different from traditional BI system in terms of low latency,

reduced access time, real time alerts and notification, large

number of users, process oriented and event driven. So there is

a great need for enterprise architectural framework that

supports the characteristics of Operational BI system. In this

paper, we present an architectural framework for Operational

BI system that uses Model View Controller (MVC) framework

which is a well proven design pattern of Java 2 Platform,

Enterprise Edition (J2EE). The proposed framework of the

system is presented interms of multi-tiered architecture, MVC

Model 2 architecture, generic objects flow and sequence

diagram. Finally, the system architecture of the proposed

system is envisaged. The proposed architectural framework is

highly scalable and supports for enterprise Operational BI

applications and systems.

Index Terms—Architectural framework, business

intelligence, J2EE, model view controller, model 2 architecture,

operational business intelligence.

I. INTRODUCTION

Business Intelligence (BI) becomes an essential element in

decision making system. Decision making is a major part of

the modern business and is essential in all most all business

organizations. BI software aims [1] to enable business users

to easily access and analyze relevant enterprise information

for timely and fact-based decisions. The use of BI is gaining

in all most all organizations irrespective of business size and

functionality which includes small, medium and large in

domestic, multi-national and even transnational

organizations for strategic and tactical decision making

purposes. Today, it is difficult to find a successful enterprise

that has not leveraged BI technology for its business [1]. The

advancement of technology and tools in today’s word

provide us to extend the functionality of BI into operational

level decision making of the business in addition strategic

and tactical decision making that evolves as new area of BI

Manuscript received May 26, 2014; revised July 28, 2014.

A. D. N. Sarma is with the Department of Computer Science and

Engineering, Acharya Nagarjuna University, Guntur - 522 510, Andhra

Pradesh, India (e-mail: adnsarma@yahoo.com).

R. Siva Rama Prasad is with the Department of Computer Science and

Engineering, Coordinator of Department of International Business Studies,

Acharya Nagarjuna University, Guntur - 522 510, Andhra Pradesh, India

(e-mail: raminenisivaram@yahoo.co.in).

which is known as Operational Business Intelligence

(Operational BI). Operational BI is one of the fastest growing

areas of BI [2]. Operational BI works on near real time basis

and provides decision making information in current time.

Thus, Operational BI systems are also known as dynamic BI,

real time BI, operational intelligence and operational

analytics. Operational BI provides low level decision making

information to front line managers of business for day to day

business operations in addition to tactical and strategic

decision making information as opposed to traditional BI.

Traditional BI systems are static, historic in nature,

non-process oriented and highly data driven. In addition, they

have very limited user access and limited view of decision

making information, what is happening in current time of the

business is not known. Moreover, traditional BI systems are

monolithic, client server and non-web based architectures.

The characteristics of Operational BI system are low latency,

reduced access time, real time alerts and notification, large

number of user access, event driven, process-orient and

decision making information in current time those are

different from traditional BI system. Thus, traditional BI

systems suffer many drawbacks as compared with

Operational BI systems interms of providing decision making

information in current time, low scalability, non-monitoring

of business performance measurements, dynamic

configuration of business performance parameters, real time

alerts and limited user access. So there is a great need to

develop an architectural framework for Operational BI

systems which is found to be an open research problem. This

motivates us to develop an architectural framework that

supports for operational business of an organization to

provide decision making information not only in present time

but also strategic and tactical users.

The goal of this paper is to propose an architectural

framework for Operational BI system that supports multi-tier

architecture, decision making information in current time,

low response time, large number of user access, business

process monitoring information and real time alert

notification. The proposed architectural framework uses

Model View Controller (MVC) Model 2 architecture of Java

2 Platform, Enterprise Edition (J2EE). MVC architecture

supports multi-tier architecture, faster response and highly

scalable. The proposed architectural framework of the system

is based on the functional architecture of the system as

described [3]. The proposed architectural framework is

browser based and is highly suitable for real time or near real

time applications on day to day business environment. The

proposed architectural framework supports to meet the

characteristics of Operational BI system as described [3].

Discussion on data warehouse system and extraction

Architectural Framework for Operational Business

Intelligence System

A. D. N. Sarma, Member, IACSIT, and R. Sivarama Prasad

International Journal of Innovation, Management and Technology, Vol. 5, No. 4, August 2014

294DOI: 10.7763/IJIMT.2014.V5.529

mechanism of data from source systems are out of the scope

of the paper.

The rest of the paper is organized as follows. Section II, we

discusses about relevant work. Section III covers

architectural framework of Operational BI system. Section

IV covers discussion. Section V covers conclusion and

further work.

II. RELATED WORK

Many researchers [4]-[6] reported work on architecture of

BI system. There is very limited work has been attempted [2],

[3], [7]-[9] on Operational BI system. As described [3],

Service Oriented Architecture (SOA) for business

intelligence makes possible a seamless integration of

technologies into a coherent BI environment which enables

simplified data delivery and low-latency analytics. In

addition, SOA based approach not only reduces the total

development and maintenance cost but also minimize the risk

and impact across an entire enterprise when introducing

business intelligence solutions.

The business process intelligence system (BPI)

architecture for process oriented decision support was

described [4] that links Operational Data Store (ODS) and

Process Data Store (PDS) to provide real time BI and

integrates Data Warehouse (DWH) and Process Warehouse

(PWH) to provide strategic BI. The architecture of BPI

consists of four major constructs namely data, operation,

information and knowledge. The data construct consists of

internal, external data sources and process audit log

databases. The operational construct includes operational

data in ODS and PDS. The information construct includes

DWH and PWH. The knowledge construct includes real time

business intelligence and strategic business intelligence. In

addition, extract transform load (ETL) application collects

data and loads into ODS, PDS, DWH and PWH.

A low cost BI system was proposed [6] using

self-organized multi-agent system (MAS) technology that

consists of four layers which are application, business, data

cleansing and data source. Each layer is dedicated to execute

one major task of the system. The upper layer interacts with

the lower layer through Web services. Building of BI systems

using self-organized MAS technology would minimize the

cost mainly due to execution of various tasks by agents

locally at various stages such as data integration, data

cleansing, metadata extraction, querying, analyzing and data

mining. Executing the various tasks of BI with agents would

reduce the data transfer and storage which minimizes the

cost.

A layered methodology for designing ETL processes in

Operational BI systems was proposed [7] that follow in

successive, stepwise refinements from high level business

requirements, through several levels of more concrete

specifications and down to execution models. The key

feature of this layered methodology is a unified formalism for

modeling the operational business processes of the enterprise

as well as the processes for generating the end-to-end

information views required by operational decision-making.

This layered methodology starts with a conceptual

specification from which the logical definition and physical

implementation are systematically derived. Included in the

conceptual model is the specification of quality objects (or

QoX objectives) which drive the design and optimization at

the logical and physical levels.

An Operational BI system essentially consists of two

architectural entities namely Corporate Information Factory

(CIF) and ODS that was described [7] which is based on the

concepts of W.H. Inmon. These two components CIF and

ODS will play a dual role interms of supporting both decision

support and operational transaction processing. ODS is used

as an intermediate layer between operational systems and a

data warehouse that has three properties such as volatile,

detailed and current valued. The concept of integrated ODS

was proposed for large scale architecture system.

The impact while shifting from strategic BI to Operational

BI was discussed [9] in terms of increased number of users,

the data volumes needed to support operational BI for

handling of a mixed workload including operational response

time, short tactical queries, massive analytical queries,

thousands of concurrent users and large volume of data.

The different levels of Operational BI were described [8]

that are analyse, monitor, facilitate and execute. In the first

level of operational BI, users analyze operational process

using traditional reports. The next level occurs when user

monitor process on a just-in-time basis using graphical key

performance indicator. In the next level, IT developers

facilitate processes by embedding BI into operational

applications using SOA to merge operational and analytical

processes into a single application. Finally, the culmination

of Operational BI is when organization executes the process

using event driven analytic engines, predictive models and

other techniques that monitor events and trigger rules to

automate or guide actions.

The key features of Operational BI system were presented

[10] which are namely low latency and reduced action time,

access to lowest granularity data, real-time alerts, faster

query response time, more ad hoc querying capability,

support for Streaming SQL, flexible to integrate the existing

business processes and workflows, performance

measurements of configurable parameters and timely

information to the users of the system. Moreover, mapping

between the key features of the system were presented with

their equivalent functional modules. A holistic view of

Operational BI system was presented [10] that consists of set

of abstract layers namely data sources, data services,

operational BI engines and support services, service delivery

and delivery channels.

The functional architecture of Operational BI system was

presented [3] which are based on the key features [10]. The

various functional layers of the system are envisaged as data

sources, data services, analytics engine, reporting engine and

portal. In addition, alert engine, business services, metadata

management and user and security. The data sources consist

of set of operational databases which acts as an input to the

system. The functionality of data services layers includes

data integration, storage, compression, OLAP, querying and

streaming. The functionality of analytic engine is not only to

provide decision making information in current time but also

form historical systems. The business services layer covers

the functionality of various modules such as workflow, key

International Journal of Innovation, Management and Technology, Vol. 5, No. 4, August 2014

295

performance indicators (KPIs) and service level agreements

(SLAs), business rules definition, logging and monitoring.

Alert engine generates alerts on real time basis to the user for

timely information. Reporting engine will provide various

reporting tools that include data visualization, dash boards

and linking between operational and strategic reports. The

portal will acts a single point of contact for information

dissemination to the various users of the system. The

technology architecture interms of conceptual, logical,

physical views and deployment architectures of the

enterprise architecture of operational business intelligence

system [11] were presented.

III. OPERATIONAL BUSINESS INTELLIGENCE FRAMEWORK

In this section, Operational BI architectural framework is

presented which covers multi-tiered architecture and various

components associated in each tier, MVC framework, MVC

Model 2 architecture, generic objects flow. Moreover, the

sequence diagram and deployment diagrams of the proposed

framework of the system are presented.

A. Multi-Tiered Architecture

The proposed Operational BI is considered as stack of tiers.

A tier is a logical representation of concerns in the system.

Each tier is responsible for set of tasks that are performed by

the components associated with in the tier. Each tier is

logically separated from another and is loosely coupled with

the adjacent tier. The multi-tiered architecture of Operational

BI system framework is shown in Fig. 1.

Fig. 1. Multi-tiered architecture of operational business intelligence.

Resource tier consists of differ data sources that includes

operational data sources, external systems and legacy

applications, email and web repositories. In addition, this

may include other transaction applications, ftp servers,

directory servers, back-office systems like enterprise

resource planning (ERP), supply chain management (SCM)

front-office systems like customer relationship management

(CRM) and custom business applications. Resource tier will

acts as input to the proposed system. In addition, resource tier

contains the business data and external data or application

sources, legacy systems and data warehouse system. The

design of data warehouse system is out of scope of this paper

and considered as an external system to the proposed

architecture.

Integration tier consists of components like Java Data

Base Connectivity (JDBC), connectors, SOA, Java

Messaging Service (JMS), other legacy applications and real

time integration. Integration tier is responsible for

communicating with external resources and systems. The

business tier is coupled with the integration tier whenever the

business objects require data or services that reside in the

resource tier. In addition, this tier consist of real time ETL,

enterprise information integration (EII) and enterprise

application integration (EAI) frameworks.

Business tier provides the business services required by

the client. This tier contains the business data and business

logic. Typically, most business processing for the application

is centralized in this tier as described [12]. Mostly workflow,

Java bean components or Enterprise beans are used as

business objects. As described [13] Java bean components

are Java classes that can be easily reused and composed

together into applications. JSP technology directly supports

using Java bean components with JSP language elements.

Java beans are easy to create and initialize parameter’s values

using get and set methods. This layer consists of a set of

components. A component is physical and replaceable part of

a system [14] that confirms to and provides the realization of

a set of interfaces. These components provide services to

other components. The various business services of

Operational BI includes login, logging, master data

management, analytical, Metadata, key performance

indicators (KPIs), Service level agreements (SLAs)

monitoring, workflow, business rule engine, monitoring

engine, alert engine, reports and dash boards as described in

[3].

Presentation tier encapsulates all presentation logic

required to service the clients that access the system. The

presentation tier intercepts the client’s requests; controls

access to business services, construct the responses and

finally deliver the response to the clients. The presentation

layer contains Servlets and Java Server Pages (JSPs) that

produce User Interface (UI) elements.

Client tier represents all devices or system clients

accessing the system resources. A client can be a Web

browser, a Java application, or a device and Graphical User

Interface (GUI).

B. Model View Controller (MVC) Architectural

Framework

Patterns are an important vehicle for constructing

high-quality software architectures [15] which a description

of the subsystems and components of a software system and

the relationships between them. MVC

(Model-View-Controller) is software architectural design

pattern which is a well proven, standard and industry

accepted architecture. The MVC architecture has its roots in

Smalltalk, where it was originally applied to map the

traditional input, processing, and output tasks to the graphical

user interaction model as mentioned [16]. Many enterprise

applications use the design principles of MVC architecture

that were described [16]-[20]. The MVC architecture is a way

of decomposing an application into three parts: the model, the

view, and the controller. It was originally applied in the

graphical user interaction model of input, processing, and

International Journal of Innovation, Management and Technology, Vol. 5, No. 4, August 2014

296

output [12]. The very advantage of MVC architecture is

separations of layers which supports multi-layer architecture.

This provides change in one layer can be accomplished

without altering the other layers of the system.

The MVC pattern can be implemented with programming

languages such as Smalltalk, Java, C, C++, and

Microsoft .NET. The MVC Model 1 architecture is shown in

Fig. 2.

Inorder to develop web applications Servlets and JSPs

technologies are commonly used in J2EE. The advantages of

servlets over Common Gateway Interface (CGI) are easier to

develop web applications, faster to run, platform independent,

handle multiple request concurrently and synchronize

requests, improved performance, scalability, reusability, safe

and secure.

Servlets create threads to handle requests instead of

creating process this results no separate memory area is

required. Thus many subsequent requests can be easily

handled by the servlets. However, there are limitations of

Servlet interms of recompilation of code as and when there is

change. Moreover, Servlets does not provide separation of

business logic from presentation logic.

Fig. 2. MVC Model 1 architecture.

JSP overcomes the limitations of Servlets which provides

separation between presentation and business logic. There is

no need to redeploy the application if JSP code is modified

unlike Servlets. Java beans are used in JSPs for developing

applications. Custom tags and Java Standard Tag Library

(JSTL) will provide reuse of components in JSP pages which

results changes in system can be handled more easily.

The logical flow of request and response in Model 1

architecture is summed up as follows:

1) Browser sends request for the JSP page.

2) JSP page access Java bean and invokes business logic.

3) Java bean connects to the database and gets or saves data

into database.

4) Response sends to the browser which is generated by

JSP.

In MVC Model 1 architecture, JSP alone acts as view and

controller this result no separation of presentation logic from

business logic, decentralized navigation control and support

for small and medium size applications.

Fig. 3 shows MVC Model 2 architecture. The client will

access the application through browser. All user requests are

handled via controller and responses through JSP. Internally,

model (Java bean) will connect to the enterprise servers/

databases inorder to access the required data.

Model encapsulates the core data and functionality. The

model represents enterprise data and the business rules that

govern access to and updates of the data.

View encapsulates the presentation of the data. The view

renders the contents of a model. It accesses enterprise data

through the model and specifies how that data should be

presented. It is the view's responsibility to maintain

consistency in its presentation when the model changes. This

can be achieved either by using a push model or pull model.

In push model the view registers itself with the model for

change notifications whereas in pull model the view is

responsible for calling the model when it needs to retrieve the

most current data.

Fig. 3. MVC Model 2 architecture.

Controller accepts inputs from the user and makes request

from the model for the data to provide a new view. The

controller translates interactions with the view into actions to

be performed by the model. In a stand-alone GUI client, user

interactions could be button clicks or menu selections,

whereas in a web application, they appear as GET and POST

HTTP requests. The actions performed by the model include

activating business processes or changing the state of the

model. Based on the user interactions and the outcome of the

model actions, the controller responds by selecting an

appropriate view.

The general structure of a web application request and

response flow using the JSP Model 2 architecture is

envisaged [21] as follows:

1) User requests are directed to the controller servlet.

2) The controller servlet accesses required data and builds

the model, possibly delegating the processing to helper

classes.

3) The controller servlet (or the appropriate sub-ordinate

task) selects and passes control to the appropriate JSP

responsible for presenting the view.

4) The view page is presented to the requesting user.

5) The user interacts with the controller servlet (via the

view) to enter/modify data, traverse through results.

MVC Model 2 architecture has the following advantages

over MVC Model 1. In MVC Model 2 Servlets acts as

controller, JSP as view and Java bean as model. Hence, there

is a clear separation between all the three layers as compared

with MVC Model 1 architecture, centralized navigation

control, easy to maintain, easy to test and highly scalable for

enterprise applications.

International Journal of Innovation, Management and Technology, Vol. 5, No. 4, August 2014

297

Fig. 4. Generic object flow of operational business intelligence system.

Fig. 5. Sequence diagram for request manager.

A. Generic Objects Flow

The general structure of a web application using MVC

Model 2 architecture 2 is Sun’s attempt to wrap JSP within

the MVC paradigm [16] which has front controller, data

access and application logic, Service-To-Worker and

Dispatcher View, Intercepting Filter, Value List Handler and

Data Access Objects (DAOs). The generic object flow of the

proposed architectural framework is envisaged in figure 4.

Front Controller is a Servlet that acts as the centralized

entry point in a web application. This performs managing

request processing, authentication, authorization services and

ultimately selecting the appropriate view.

Data access and application logic contain entirely within

the controller servlet and its helper classes [21]. The

controller servlet (or the helper class) should select the

appropriate JSP page and transfer control to that page object

based on the request parameters, state and session

information. One of the major advances that come with JSP

Model 2 is Sun’s specification of the JSTL which specifies

the standard set of tags for iteration, conditional processing,

database access and many other formatting functions.

The guidelines associated with JSP Model 2, Sun also

provided a set of blueprints for building application using the

MVC paradigm and these blueprints renamed the J2EE Core

Patterns.

Service-To-Worker and Dispatcher View strategies for

MVC application where the front controller module defers

processing to a dispatcher that is selected based on the

request context. In the Dispatcher View pattern, the

dispatcher performs static processing to select the ultimate

presentation view.

In the Service-To-Worker pattern, the dispatcher’s

processing is more dynamic, translating logical task names

into concrete task module references and allowing tasks to

perform complex processing that determines the ultimate

presentation view.

Intercepting Filter allows for pluggable filters to be

inserted in the “request pipeline” to perform pre and post

processing of incoming requests and outgoing responses.

B. Sequence Diagram

A sequence diagram [14] is an interaction diagram that

emphasizes the time ordering of messages that send and

receive which helps to model dynamic aspects of a system.

The sequence diagram of MVC with request dispatcher (or

International Journal of Innovation, Management and Technology, Vol. 5, No. 4, August 2014

298

manager) is shown in Fig. 5. This shows the interaction

between various objects such as user, request manager,

controller, JSP and Java bean.

C. System Architecture

The system architecture of the proposed Operational BI is

shown in Fig. 6. Data resource layer contains all the legacy

application data, data sources, data warehouse and Metadata.

Operational BI engines with admin services, user

management and other resources code are deployed on

application server. Operational BI engines have various

sub-engines that include ETL, Real Time ETL, business rules,

Online analytical processing (OLAP), data compression,

reporting, dashboards, alert notification and monitoring,

analytics and SQL streaming as mentioned in [10].

Fig. 6. System architecture of operational business intelligence.

In addition to this admin services include managing

various business services, configuration of parameters to be

measured and user management. Web server contains various

UI components and as well as portal. All the users of the

system will access the resources through the browser. The

portal acts as singe entry point to the users to access the

applications resources that are available in the system. This

also acts information dissemination and collaboration tool.

IV. DISCUSSION

MVC is an architectural design pattern of J2EE which is

well proven and industry accepted architecture. The main

advantage of the MVC design pattern is to separate the

application object (model) from the way it is represented to

the user (view) from the way in which the user controls it

(controller). This pattern contains two models MVC 1 and

MVC 2 for implementation. MVC 1 architecture is page

centric and tightly coupled between page and model.

 The proposed design of Operational BI system uses MVC

model 2 (MVC 2) that removes page centric property of

MVC 1 and separates presentation logic and application logic.

The controller receives all requests for the application and is

responsible for taking appropriate action for each request.

Model contains the state (data), view displays model to user

(presentation) and controller modifies model (business logic).

The proposed design of the system will support the 9 Key

features of the Operational BI as described [10] and

functional architecture as described [3]. The proposed

architecture framework supports the characteristics of

Operational BI systems interms of multi-tier architecture,

reduced data latency, supports real time applications, access

for large number of users and can be used for enterprise

Operational BI applications and systems.

The proposed architectural framework of Operational BI

has the following advantages:

1) Clear separation between presentation logic and

business logic: - Each object in MVC has distinct

responsibilities. All objects and classes are independent

of each other. So change in one class does not require

alternation in other classes.

2) Multiple views using the same model: - The separation

of model and view allows multiple views to use the same

model. This is not only facilitates easier implementation

of enterprise model but also easier to test, and

maintaining of the enterprise application.

3) Efficient modularity: - This architecture highly supports

modular development of the application either by the use

of different controllers for each module or single

controller with different action classes.

4) Easier support for new types of clients:-This model is

easier to support for new types of clients. We need to a

view and controller for each type of client and wire them

into the existing enterprise model.

5) Support for web applications: This model is often seen in

web applications.

6) High scalability: - Controllers and views can grow as the

model grows; and older versions of the views and

controllers can still be used as long as a common

interface is maintained.

7) This model supports easier maintenance of the code and

future improvements of the application.

V. CONCLUSION

Traditional BI is static, historic in nature and mainly used

for strategic and tactical decision making whereas

Operational BI is dynamic, current in time and provides

decision making information not only in current time but also

strategic and tactical levels. Operational BI works on near

real time/ real time, event based and low data latency where

as traditional BI based on data driven and high data latency.

The characteristics of Operational BI system is different from

traditional BI system in terms of low latency, reduced access

time, real time alerts and notification, large number of users,

process oriented and event driven.

In this paper, the architectural framework for Operational

BI system is presented using MVC Model 2 architecture of

J2EE which is well proven and industry accepted

architectural pattern. The tiered (or layered) architecture of

the proposed system is presented and explained the major

components associated in each tier. Explained MVC Model 2

architecture works and how this is different form MVC

Model 1. The flow of user request and system response is

International Journal of Innovation, Management and Technology, Vol. 5, No. 4, August 2014

299

explained. The interaction between various objects in MVC

architecture such as user, request manager, controller, JSP

and bean is explained with the help of sequence diagram. The

structure of web application of the proposed system is

explained. The generic object flow of the proposed

Operational BI system is presented. The system architecture

of the proposed system is presented and explained.

In the future, the proposed architectural framework of

Operational BI system can be implemented as a prototype.

The functionality of the proposed system will be tested for

one of the business verticals. The proposed architecture can

be further implemented using one of the programming

languages such as Small talk, Java, Microsoft .NET. Further,

the proposed architectural framework can be extended into

hierarchical MVC architecture for multiple client tiers.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8] W. W. Eckerson, “Best practices in operational BI – converting

analytical and operational process,” TDWI Best Practices Report,

2007.

[9] C. Imhoff, “Operational business intelligence, It’s time to expand the

scope of business intelligences,” Teradata Magazine, September 2006,

pp.16-18.

[10] A. D. N. Sarma and S. R. Prasad, “9 key features of operational

business intelligence,” Journal of Computer Engineering: An

International Journal, vol. 1. no. 1-2, pp. 11-18, 2012.

[11] A. D. N. Sarma and S. Prasad , “Enterprise architecture of operational

BI system,” National Conference on Recent Advances in Soft

Computing and Knowledge Discovery (SCKD-2012), January 19-21,

2012, Tirupati, India.

[12] N. Gulzar, Practical J2EE Application Architecture, McGraw-Hill:

Osborne Media, March 2003, ch. 4, pp. 89-93.

[13] S. Bodoff et al., The J2EE Tutorial, 2nd edition, Addison Wesley, 2002,

ch. 12, pp. 269-277.

[14] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software

Development Process, 4th Indian reprint, Addison-Wesley, 1999, ch. 18.

pp. 243-256, ch. 25, pp. 346-348.

[15] B. Uschmann et al., Pattern-Oriented Software Architecture: A System

of Patterns, 1st edition, John Wiley and Sons, 1996, ch. 6, pp. 383-39.

[16] G. Krasner and S. Pope, “A description of the model view controller

user interface paradigm in the smalltalk-80 system,” Journal of Object

Oriented Programming, vol. 1, no. 3, pp. 26-49, 1988.

[17]

[18]

[19]

[20]

[21]

Limited, Hyderabad, Andhra Pradesh, India. Earlier he was associated with

Goldstone Technologies Ltd and RAM Informatics Ltd at a capacity of

general manager (Projects) and general manager (Software Systems)
 respectively.

 Sarma has more than 24 years of experience that includes research,

information technology and academic. His interesting areas

include business

operations management, information

systems, information technology

management, software engineering, software architecture, algorithms, data

mining, business intelligence and e-commerce.

He is a global member of

 Internet Society

since 2009, member of International Association of

Acharya Nagarjuna University. He earned M.B.A and

M.C.A degrees and Ph.D from Acharya Nagarjuna

University.

Prasad has more than 20 years of experience that

includes research, and academic. His interesting areas

include e-commerce, information systems, e-governance, HRD and finance.

He has published more than 33 research papers, attended 80 national and

international seminars, delivered 104 extension lectures and published 5

books.

International Journal of Innovation, Management and Technology, Vol. 5, No. 4, August 2014

300

S. Chaudhuri, U. Dayal, and V. Narasayya, “An overview of business

intelligence technology,” Communications of the ACM, vol. 54, no. 8,

pp. 88-98, August 2011.

U. Christ, “An architecture for integrated operational business

intelligence,” in Proc. Conference on Business, Technology, and Web

(BTW), Lecture Notes in Informatics, vol. P-144, pp. 460-468, 2009.

A. D. N. Sarma and R. S. Ramprasad, “Functional architecture for

operational business intelligence system,” in Proc. IEEE-International

Conference on Advances in Engineering, Science and Management

(ICAESM 2012), March 30-31, 2012, Nagapattinam, India,

pp.213-218.

L. Wu, G. Barash, and G. Bartolini, “A service oriented architecture for

business intelligence,” Service-Oriented Computing and Applications

(SOCA '07), June 2007, pp. 279 – 285.

L. An, J. Yan, and L. Tong, “Business process intelligence system:

architecture and data models,” in Proc. the Sixth Wuhan International

Conference on e-Business, Wuhan, China, 2007, pp. 6-13.

M. Venkatadri, H. G. Satry, and G. Manjunath, “A novel business

intelligence framework,” Universal Journal of Computer Science and

Engineering Technology, vol. 1, no. 2, pp. 112-116, November 2010.

U. Daya, K. Wilkinson, A. Simitsis, and M. Castellanos, “Business

process meet operational business intelligence,” Data engineering, Sep.

2009, vol. 32 no. 3, pp. 35-41.

M. Gallego-Carrillo, I. García-Alcaide, and S. Montalvo-Herranz,

“Applying hierarchical MVC architecture to high interactive web

applications,” in Proc. Third International Conference Information

Research, Applications and Education, June 27 - 30, 2005, Varna,

Bulgaria, 2005, pp. 110-114.

T. Dey, “A comparative analysis on modeling and implementing with

MVC architecture,” International Journal of Computer Applications

(IJCA), pp. 44-49, 2011.

P. Gupta and M. C. Govil, “MVC design pattern for the multi

framework distributed applications using XML, spring and struts

framework,” International Journal on Computer Science and

Engineering (IJCSE), vol. 2, no. 4, pp. 1047-1051, 2010.

Y. Ping , K. Kontogiannis, and T. C. Lau, “Transforming legacy web

applications to the MVC architecture,” presented at the Eleventh

Annual International Workshop on Software Technology and

Engineering Practice, 2004.

L. Shklar and R. Rosen, Web Application Architecture: Principles,

Protocols and Practices, John Wiley and Sons, 2003, ch. 9, pp.

256-264.

Sarma is currently working as an assistant vice president for Bartronics

Engineers (IAENG) and a member of the Computer Science Teachers

Association (CSTA). He has published and presented more than 20 papers in

various reputed International conferences and journals.

R. Siva Rama Prasad is working as a research

director in computer science and engineering and a

coordinator for international business studies,

A. D. N. Sarma is from Vijayawada, Andhra Pradesh,

India and was born in 1964. He earned B.Sc and M.Sc

(electronics) degrees from Acharya Nagarjuna

University in 1984 and 1998 respectively. He received

M.Phil degree from Andhra University in 1993. He

got M.S. (software systems) from B.I.T.S., Pilani in

1998 and received M.B.A from Pondicherry

University in 2007. Currently the author is pursuing

Ph.D in computer science and engineering from Acharya Nagarjuna

University.

