
  

 

Abstract—Performance of wind turbines can be negatively 

affected by uncertainties. Uncertainty-based multi-disciplinary 

design optimization (UMDO) techniques have been successfully 

applied in the aerospace industry and given the similarities to 

wind turbine design problem, application of UMDO techniques 

is an opportunity to improve wind turbine design. However, the 

major challenges of UMDO, namely computational complexity 

and organizational complexity caused by both time-consuming 

disciplinary analysis models and UMDO algorithms, still 

greatly hamper its usage in wind engineering. In recent years, 

there is a surge of research aiming at solving these problems. 

The purpose of this paper is to review these approaches and 

with the gathered information, a strategy with bi-level 

integrated system synthesis (BLISS) and performance 

measurement approach (PMA) for a reliability-based 

multidisciplinary design optimization of a wind turbine is 

 
Index Terms—Bi-level integrated system synthesis, 

performance measurement approach, sequential optimization 

and reliability evaluation, uncertainty-based multi-disciplinary 

design optimization 

 

I. INTRODUCTION 

In the last few years, the demands for complex engineering 

systems like wind turbine to have better performance, higher 

reliability and robustness, and lower cost and risks are on the 

rise. To address these competing objectives, engineers 

usually take design and optimization methods with 

consideration of all relevant aspects of the project lifecycle 

from the mission definition to the final disposal. All through 

the lifecycle, there inherently exists a vast quantity of 

uncertainties arising from the system itself, as well as the 

environmental and operational conditions that it is involved 

in. For instance, for a structural design, the underlying 

uncertainties include prediction errors induced by the design 

model assumptions and simplification, performance 

uncertainty arising from material properties and 

manufacturing tolerance, and uncertainties of load conditions 

applied on the structure during operation. These uncertainties 

may cause the system performance to change or fluctuate, or 

in some extreme cases even causes severe deviation that leads 

to functional fault and mission failure of the system. As Yao 

and et al. [1] described in their literature, it is thus important 

to consider uncertainties from the beginning of the system 

design process, especially the complex ones. 
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In general, there are two primary categories of uncertainty- 

based design methods: robust design optimization (RDO) 

and reliability-based design optimization (RBDO). Both of 

these two non-deterministic approaches can also be 

formulated into a single design problem to concurrently seek 

improvements in both the system’s robustness and reliability 

(RBRDO). RDO is a method to optimize the system design 

such that it will be insensitive to various variations while 

RBDO is a method to optimize the system design to ensure its 

reliability with small chance of failure under predefined 

acceptable level. Recently, some multi-disciplinary design 

optimization (MDO) methods have been extended to account 

for uncertainty (UMDO). Hu et al. [2] consider new 

approximation assisted multi-objective collaborative robust 

optimization (AA-McRO) under interval uncertainty. The 

new AA-McRO enhances the convergence by transforming 

multi-objective system problem at the upper level into a 

single-objective upper-level coordination problem and a 

multi-objective lower-level optimization problem. Li et al.  

[3] have developed sequential optimization and reliability 

assessment for multidisciplinary design optimization under a 

hybrid uncertainty of randomness and fuzziness. In order to 

solve MDO problems with uncertainty more effectively, the 

intelligent algorithms-based FRMDO–SORA method will be 

applied. Moreover, Zhang and Zhang [4] have proposed the 

multidisciplinary design optimization under uncertainties 

that is based on BLISS and PMA. Their future research 

seems to be focused on considering more one type of 

uncertainties. Yao and Chen [5] have extended sequential 

optimization and mixed uncertainty analysis (SOMUA) 

algorithm that was developed for single disciplinary RBO for 

accounting mixed aleatory and epistemic uncertainties to be 

applied for mixed uncertainty-based RBMDO procedure 

MUMDF-CSSO. One limitation to implement 

MUMDF-CSSO for complex system with close coupled 

interdisciplinary relationships is the issue of how to rationally 

decouple the different disciplines, which is of great 

importance for the efficiency of reliability analysis as well as 

the solving process of the whole UMDO problem. In addition, 

a variety of methods have been proposed to use 

approximation in collaborative optimization (CO). Notably, 

Zhang et al. [6] have developed a PMA-based collaborative 

strategy for reliability based-design and optimization of the 

multi- disciplinary systems. The main idea here is the 

decoupling of traditional triple-level nested flowchart of 

RBMDO through sequential optimization and reliability 

assessment (SORA). 

Performance of wind turbines can be negatively affected 

by uncertainties. Due to this, more studies combining MDO 

with uncertainty quantification in wind turbine complex 

system are needed, along with a better understanding of the 

nature of the uncertainties associated with the environmental 
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conditions, physical processes, and cost metrics. There are 

already some studies introducing MDO problems in wind 

turbine category but these algorithms are only concerned 

with deterministic objectives rather than the 

non-deterministic objectives. More recently, Nicholson et al. 

[7] have proposed a multi-objective structural optimization 

of wind turbine tower and foundation systems using Isight. 

Furthermore, McWilliam et al. [8] have extended a 

framework for aeroelastic multidisciplinary design 

optimization of horizontal axis wind turbines. Maki and et al. 

[9] have also proposed a multi-level optimization analysis to 

be performed on a system design of a three-bladed horizontal 

axis wind turbine. The top-level objective is to minimize the 

cost of turbine’s energy production and a detailed cost-model 

is used. In this case, two disciplinary level optimizations are 

conducted simultaneously. The first designs the geometry of 

the blade to maximize annual energy production (AEP) while 

the second configures the structure of the blade. Additionally, 

Bottasso et al. [10] suggested multi-disciplinary constrained 

optimization of wind turbines, which was intended to obtain 

minimum weight in the constrained sizing of the rotor blade. 

Besides, there are some literatures in wind turbine category 

directly nested in the optimization under uncertainty that are 

not multidisciplinary design optimization in wind turbine. 

For instance, Petrone and et al. [11] considered variability in 

the wind conditions, manufacturing tolerances and roughness 

induced by insect contamination as sources of uncertainties 

and simultaneously treated all of them in a probabilistic 

framework using Latin hypercube sampling and stochastic 

simplex colocation. After that, the estimation and analysis of 

horizontal axis wind turbine performance under uncertainty 

is carried out. In addition, a lot of work has also been done on 

improving reliability based robust design optimization but 

these literatures are not concentrated on the multidisciplinary 

design optimization like those presented in [12]-[17].  

Looking at the present state of the research in wind turbine 

system design as roughly indicated by the above discussions, 

this paper aims to present an effective RBMDO model under 

uncertainties for the wind turbine system based on BLISS 

and PMA. 

 

II. MDO ARCHITECTURE 

MDO architecture refers to the combination of the design 

problem formulation and the organizational framework that 

is used to solve it. A lot of architectures have been developed 

such as Individual Design Feasible (IDF), Multidisciplinary 

Feasible (MDF), Collaborative Optimization (CO), Bilevel 

Integrated Systems Synthesis (BLISS) and BLISS 2000 [18]. 

However, here we introduce two last ones. The workflows 

for architectures are defined using the extended design 

structure matrix (XDSM) notation proposed by Lambe and 

Martins [19] for all the test problems. XDSM diagrams 

describe both data and process flows, providing a complete 

description of the algorithm. In short, the thin black lines in 

the diagram are describing the process flow by indicating the 

order the blocks are executed. The thick gray lines describe 

the movement of data, with vertical lines indicating inputs to 

a given block and horizontal lines indicating outputs. All 

parallelogram blocks are data blocks that represent variables 

while the other blocks represent components or drivers in the 

analysis. The stack of any given block type that has an i in the 

title (e.g., analysis i), indicates that n such blocks exist and 

may be run in parallel if desired. Each step in the process is 

given a numeric label (the first step in the process is always 

zero) that applies to both the process flow and the data flow. 

For process flow, labels are used to indicate loops (e.g., 

solver loops, optimizations). For example, in Fig. 1, the 

optimization loop for the individual design feasible (IDF) 

architecture is assigned with the label "0; 3 → 1.”This 

indicates that starting at 0, one will follow the path from 1 to 

2 to 3, and returns to step 1 and continues looping until an 

optimum is reached. The numeric labels in the data blocks 

indicate the step during which the data are either input to or 

output from the block. 

A. Bi-Level Integrated Systems Synthesis (BLISS) 

BLISS [20] operates on a series of linear approximations 

of the actual objective function and constraints. To derive 

those approximations, the architecture can use either a 

numerical finite difference engine or analytic derivatives. For 

system- level problem, sensitivities are only taken with 

respect to the global variables. Likewise, for the 

discipline-level problem, the sensitivities are only taken with 

respect to the local design variables that are unique to specific 

discipline. The general process is to generate a linearized 

approximation of the system, optimize with respect to that 

approximation, and then generate a new linearized 

approximation at the optimum point. Target variables are 

created for all the design variables, and fixed point iteration is 

used to converge the targets with the design variables. The 

defining feature is that no optimization ever occurs directly 

on the actual discipline analyses, only on the approximate 

models. BLISS uses move limits, Δxi limit, to constrain the 

distance the optimization can move during one iteration. For 

this work, the move limit was set to 5% of the initial value for 

any given design variable. To enforce the system 

compatibility, BLISS uses a solver to perform MDA for each 

major iteration. Hence, the coupling variables do not show up 

in the problem formulation. The major iteration for BLISS is 

controlled by a fixed point iteration that checks to see if the 

design variables have converged to within specified tolerance 

between the current and previous iterations. For this sample 

work, the lowest value of tolerance that can be used without 

always hitting the maximum iteration limit was 0.005. Since 

BLISS operates on linear approximation for the actual system, 

it can be difficult to get this architecture to converge very 

tightly. This tolerance should not be confused with the 

specific tolerance on the optimizers used in the sub-problems 

of BLISS, which remained at 1×10−6 so as to be consistent 

with the other cases investigated.  

 

 
Fig. 1. XDSM diagram for sample IDF architecture [18]. 
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The XDSM for BLISS is shown in Fig. 2. Steps 5 and 8 

from Fig. 2 indicate the explicit calculation of discipline and 

system level sensitivities. These sensitivities are then used to 

construct a linearized model that is optimized.

B. Bilevel Integrated Systems Synthesis 2000

BLISS-2000 [21] is a reformulation of the original BLISS 

algorithm developed to eliminate the need for calculating 

sensitivities on the MDA. BLISS-2000 does not perform an 

MDA at all. It uses an IDF-like formulation to drive the 

system level problem, which is run on quadratic response 

surface approximations of the system. The XDSM for 

BLISS-2000 is shown in Fig. 3. Note from the XDSM that 

the major iteration is controlled by a convergence check that 

operates similar to the one used in BLISS. It checks to see 

how much the design variables are changing and stops when 

they differ by less than a given tolerance between two 

iterations. Again, similar to BLISS, because BLISS-2000 

operates on approximations for the true system, it can be 

difficult to reach tight convergence levels for the design 

variables. Hence, just like for BLISS, the convergence 

tolerance of the major iteration loop is set to 0.005, though 

the sub problem optimizations still converge to the tighter 

1×10−6. As seen in Fig. 3, in step 5 of the process, a 

metamodel for each of i disciplines must be created based on 

training data. These data are collected by executing a 

LatinHypercube DOE.

From the XDSM in Fig. 3, the major iteration is controlled 

by a convergence check that operates similarly to the one 

used in BLISS. It checks to see how much the design 

variables are changing and stops when they differ by less 

than the specified tolerance between two iterations. Similar to 

BLISS, because BLISS-2000 operates on approximations for 

the true system, it can be difficult to reach a tight 

convergence level for the design variables. As seen in Fig. 3, 

in step 5 of the process, a metamodel for each of the i 

disciplines must be created based on training data. These data 

are collected by executing a Latin Hypercube design of 

experiment (DOE).

C. MDO Parallel Processing

There are many schemes to classify parallel computers that 

have been proposed so far but none of them has become the 

standard. For this study, well-known Flynn's taxonomy will 

be used: SISD (Single Instruction Stream, Single Data 

Stream), SIMD (Single Instruction Stream, Multiple Data 

Stream), MISD (Multiple Instruction Stream, Single Data 

Stream) and MIMD (Multiple Instruction Stream, Multiple 

Data Stream) [22]. The parallelization schemes that have 

been proposed for the Multi Objective Evolutionary 

Algorithms (MOEAS) are derived from well-known models 

or paradigms designed for single-objective optimization such 

as the master-slave model, the island model, the diffusion 

model and the hybrid model. Once convinced of MOEA’s 

effectiveness (how well it solves the problem), it is of a great 

interest to increase its efficiency (how “quickly” or “cheaply” 

it could solve the problem). The desire to reduce execution 

time and/or resource expenditures leads to consideration of 

parallel and distributed processing techniques [23]. Many 

multi-level MDO architectures can potentially allow for 

parallel execution of the local-level disciplines. In parallel 

execution, system-level optimizer will provide a set of inputs 

to all local-level disciplines, which they can apply to perform 

local-level optimization simultaneously.

This contrasts to a sequential execution where each of the 

disciplines must go in a specific order such that it can pass its 

outputs to other disciplines down the line. Parallel execution, 

if efficient, could result in large time savings for the entire 

optimization process. The savings are anticipated to be most 

significant for large problems where several of the disciplines 

involved take a lot of time and effort to execute local-level 

sub-problem design and optimization. 

III. PROPOSED STRATEGY FOR WIND TURBINE DESIGN

In this study, a multi-level system design (MLS) algorithm 

is utilized for the wind turbine system analysis. The Cost of 

Energy (COE) comprises the overall system level objective 

while the performance improvements at two technical design 

disciplines are pursued at the same time. The disciplines are 

corresponding to the optimal design of the blade geometry 

for maximum annual energy production (AEP) and the 

structural design of the blade for minimum bending moment 

at the root of the blade. Main characteristics of the wind 

turbine, namely rotor diameter, rotational speed, maximum 

rated power, hub height, structural characteristics of the 

blade and geometric characteristics of the blade (distribution 

of thickness, twist angle, and chord) are employed as the 

design variables for the overall design analysis. In addition, 

the reliability of the blade is also included in this proposed 

framework and consideration of this aspect of the structure 

will likely increase the relative influence on the COE. The 

rest of this paper is structured as follows. Implementation of 

deterministic multi-disciplinary design optimization of a 

wind turbine is discussed in sections A, B, C and E. 

Furthermore, section E introduces a strategy for 

non-deterministic multi-disciplinary design optimization of a 

wind turbine. Finally, some conclusions are given.

A. Discipline 1: AEP

The first discipline level optimization is to maximize the 

AEP of the design. The AEP is determined using output from 

the wind turbine program and is based on the blade geometry 

from the genetic algorithm (GA) optimization output. Here, 

the wind is assumed to be constant over the rotor area but will 

vary depending on the hub height according to (1) where V is 

the wind speed at the hub, Vref is the reference wind speed at 

the reference hub height and Href is the reference hub height.

34.0)(
ref

ref
H

HubHt
VV                  (1)

Equation (1) takes into account the improved wind that a 

taller tower will provide to the rotor. Power-law coefficient 

of 0.34 is appropriate for neutrally stable air above the 

human- inhabited areas [24]. The main output from this wind 

turbine performance program is the power generated by the 

design for a range of wind speeds. The power curve is used to 

calculate the AEP by assuming the probability of occurrence 

of wind at any height follows a Rayleigh-distributed trend as 

dictated in (2), where Vm is the mean wind speed at the hub 

height. The mean speed, V is determined using (1).



  

 
      

 

 
      

 

 

 

 

     

International Journal of Innovation, Management and Technology, Vol. 5, No. 1, February 2014

74

Fig. 2. XDSM diagram for sample BLISS architecture [18].

Fig. 3. XDSM diagram for sample BLISS-2000 architecture [18].
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Finally, the AEP is calculated using (3). This integral can 

be numerically approximated with a trapezoidal rule.
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B. Discipline 2: Blade-Root Bending Moment

On the other hand, the second discipline seeks to minimize 

blade-root bending moment. The blade loads are determined 

with the aero-servo-elastic time-domain simulator program 

that relies on inputs from several other programs. 

Specifically, the structural properties are found with 

structural properties of a composite blades program while the 

mode shapes of the tower and blade are determined by the 

modes program. The input wind time series is specified by 

the IEC Wind program. Moreover, the feasibility constraints 

are imposed on the blade sectional geometry (see Fig. 4 for a 

pictorial definition of the blade variables). For instance, the 

thickness of the shell and the web should decrease 

monotonically with the increasing spanwise coordinate. Also, 

the thickness of the shell, ts and web, tw must satisfy the 

following inequality constraints as in (4) and (5) in terms of 

the maximum blade sectional thickness, t, respectively. 

Another constraint to be imposed is to ensure that the largest 

strain in the blade does not exceed the limit of the given 

maximum in each one of the sections of the blade.

tts
2

1
                            (4)

ttw 2                              (5)

C. Overall System Objective: Cost of Energy (COE)

To estimate the COE, the analysis will employ the model

as proposed in. This report provides a cost estimation 
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procedure that is based on existing designs to develop scaling 

relations to systematically estimate the COE for new turbines. 

Mathematically, the COE is calculated using (6) where COE

here is the leveraged cost of energy ($/kWh), FCR is the 

fixed charge rate (1/yr), ICC is the initial capital cost ($),

AEP is the annual energy production (kWh/yr) and AOE is 

the annual operating expenses ($/yr).

Fig. 4. Blade section diagram.

FCR ICC AOE
COE

AEP

 
                 (6)

Equation (6) is the ratio of the cost to produce the energy to 

the amount of energy that is produced. The AEP is calculated 

by combining the output of relative wind turbine 

performance program with the assumed Rayleigh-probability 

distribution of the wind. The total cost of energy production 

is the initial capital cost multiplied with the fixed charge rate 

(FCR×ICC) and the annual operating expenses (AOE). The 

fixed charge rate accounts for the amount per dollar of initial 

capital cost needed to cover the various fixed charges such as 

construction financing and associated fees, depreciation, 

taxes and also insurance. The value of 0.1158/yr is suggested 

in the technical report of Fingersh and et al. [25], which is 

based on the research conducted by LWST (Low Wind 

Speed Technology) projects that were supported by US 

Department of Energy. The initial capital cost includes the 

cost of the turbine capital cost (TCC) and the balance of 

station (BOS).

BOSTCCICC               (7)

Here, the TCC includes tower, control system, drive train, 

and rotor. The BOS accounts for items such as the foundation, 

transportation from the manufacturing site to operational site, 

and assembly. Also, BOS takes into account the engineering 

services and the cost of any required permits. In (6), the AOE 

includes the operation and maintenance, the land lease and 

the replacement costs. The operation and maintenance is 

related to turbine maintenance, parts and supplies for 

equipment and facilities maintenance, and also labor for 

administration and support. Typically, AOE are dominated 

by the replacement costs and operation and maintenance.

All parameters in Eq. (6) can be estimated based on scaling 

relationships found in [25]. Most of the scaling relationships 

are based on the principle design characteristics such as rotor 

diameter, machine rating and tower height. All of the design 

variables are implicitly represented in the calculation of the 

COE. The blade geometry is determined based on the GA 

optimization results. The blade geometry is used as input to 

the first discipline level activity to calculate the AEP. Also, 

blade and tower mass are determined from Aero-servo-elastic 

time-domain simulator program that is executed in the 

second discipline.

The main variables that affect the COE are the rotor radius, 

maximum RPM, rated power and hub height. These variables 

are used to determine the AEP through the GA optimization 

and wind turbine performance codes and the AEP is a main

parameter for COE. For example, the TCC includes the cost 

of equipment that is strongly dependent on the rotor radius 

(e.g. rotor and nacelle equipment cost), hub height (e.g. tower 

cost) and the rated power (e.g. nacelle equipment cost). The 

BOS cost is also a function of the rotor radius, hub height and 

rated power. The annual operating expenses are a function of 

the rated power and AEP. Other design variables like the web 

thickness and the shell thickness affect the blade mass and 

hence, the blade cost and COE. However, their influence on 

the COE is relatively small. 

All in all, design structure matrix (DSM) for the proposed 

Bi-Level Integrated System Synthesis of the wind turbine 

deterministic optimization is presented in Fig. 5. 

D. RBMDO Based on BLISS and PMA

The wind turbines can generally fail due to a number of 

different failure mechanisms as tabulated in Table I.

TABLE I: FAILURE MECHANISMS FOR WIND TURBINES

Part/Component Possible Failure Mechanism

Support structure
-Exceeding bearing capacity

-Sliding failure

Tower

-Exceeding yielding stress

-Buckling

-Fatigue failure

Hub
-Exceeding yielding stress

-Fatigue failure

Blades

-Global bucking

-Fiber failure

-Matrix failure

-Inter-laminar failure

-Fatigue failure

Both the sequential optimization and reliability evaluation 

(SORA) and the collaborative idea of BLISS and PMA are 

adopted in the proposed BLISS-SORA method. Therefore, 

the whole procedure becomes a serial sequential optimization 

flowchart. The multidisciplinary reliability analysis (MRA) 

is implemented after gaining the deterministic MDO (DMDO)

results by the BLISS strategy. The MRA is implemented by 

the proposed a single loop MRA (SLMRA) method. As the

result, high iterations of MDA and the whole computation of 

MRA are eliminated, and the efficiency of the whole 

RBMDO is improved greatly.

The whole procedures of the proposed method are shown 

in Fig. 6. It can be observed that the MRA is decoupled from 

the triple-level nested optimization flowchart. Hence the 

whole procedure of RBMDO is become a single level and 

sequential iterative optimization. The MRA is conducted 

after DMDO to avoid reliability analysis of all probabilistic 

constraints. As a result, the numbers of MDA and MRA 

reduced greatly.
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Fig. 5. XDSM for Bi-Level Integrated System Synthesis (BLISS) of the wind turbine deterministic optimization.

Fig. 6. Procedures of the proposed BLISS-SORA for non-deterministic multidisciplinary design optimization of a wind turbine [4].

IV. CONCLUSION

In this paper, we have reviewed the application of UMDO 

during the last few years. In addition, with the main idea of 

SORA, the triple-level nested RBMDO flowchart can be 

decoupled, and the deterministic MDO and the MRA can be

executed sequentially. The whole procedure thus becomes a 

serial sequential optimization flowchart. The MRA will only 

be implemented after obtaining the deterministic MDO 

results by BLISS strategy. Too much iteration of 

multidisciplinary analysis and the whole computation of 

reliability analysis can be thus eliminated, and the efficiency 

of the whole RBMDO is improved greatly. In 

reliability-based optimization, it is not necessary to calculate 

the exact reliability for each iteration point during the 

optimization search and it is adequate just to judge whether 

the target reliability has been achieved. Hence, an alternative 

approach, PMA was proposed.

Also, more efforts and future researches may be focused

on a mix of robust objective/reliable constraints is believed to 

be better suited than the original RBDO formulation for 

general purpose optimization, particularly when a

performance target cannot be readily established for the 

probabilistic objective type. They involves the 

implementation and the testing of the proposed reliability 

based robust multi-disciplinary design optimization 

(RBRMDO) architecture, choice of uncertainty parameters 

and their respective probabilistic distributions, as well as the 
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complete validation of the new analyzer modules. Special 

attention will be given to assessing the impact of the 

reliability constraints on the results, and determining whether 

the extra computational effort (vs. deterministic problems) is 

justified.
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