
  

 

Abstract—Genetic algorithms (GAs) are based on techniques 

inspired by some aspects of natural science such as inheritance, 

reproduction and mutation, and they are used as optimization 

technique for searching large solution spaces. In computer 

science, for example, they could be used in data sorting and 

searching, circuit design and to improve application 

performance the quality of designed tools such as code 

generation. This paper looks at the possibility of using genetic 

algorithms to ameliorate the automatic construction of code 

generators. Experimental evidence is provided that the use of 

such algorithms can improve the quality of automatically 

constructed code generators. 

 

Index Terms—Genetic algorithms, compilers, code-selection, 

permutation problem. 

 

I. INTRODUCTION 

Mass produced human artifacts undergo evolution in a 

manner analogous to biological lineages. A mass produced 

article like a car or a processor chip is the materialisation of a 

pre-existing data structure produced in the design offices of 

its manufacturing company. Firms retain elements of 

previous designs in new products, with the design being 

modified with successive product releases. This process 

generates product lineages that, just as with biological ones, 

allow the reconstruction of an ancestry. The theoretical 

foundations of genetic algorithms (GAs) are based on 

techniques inspired by some aspects of natural science such 

as inheritance, reproduction and mutation.  

An implementation of a standard GA starts by encoding a 

feasible solution to a given problem on a simple data 

structure; called chromosome, and apply genetic operators on 

a set of potential solutions (population) in order to select 

better solutions and reproduce new individuals (offspring). 

Consequently, the new population is expected to be better 

than the old population. 

Genetic algorithms could be used as tools to evolve a 

solution for several types of problems [1]-[7]. In computer 

science, GAs could be used to predict performance of a given 

application under certain circumstances or to improve the 

quality of designed tools such as code generation. For 

example, a genetic algorithm approach was used to model the 

performance of memory-bound computations on different 

architecture [5]. GAs has been also used to improve 

generated code's execution time or its size [1], [2]. 

In the case of computer processors the most fundamental 
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part of the inherited design is the instruction set, and it is this 

that we can view as the inherited genome. The process of 

evolution of the Intel x86 processor families, for example, is 

a history of genetic accretion from the genetic code 

Ur-microprocessor the 4004, through the 8008, 8080, 8086 

etc, down to modern chips like the SandyBridge [8]. We even 

see processes analogous to the formation of the Eukaryota 

when formerly free living organisms were ingested and 

incorporated as organelles: mitochondria and chloroplasts. 

The incorporation of these organelles led to the Eukaryota 

having dual genomes - nuclear and mitochondrial DNA for 

animals. In the Intel/AMD/Transmeta/VIA etc lineage the 

equivalent to the Eukaryotic Revolution was the ingestion of 

the formerly free living x87 floating point processor into the 

486. Since then the processor lineage has incorporated two 

distinct genomes for floating point and integer code. Further 

events analogous to chromosome duplication and subsequent 

specialisation led to the generation of sub-families inheriting 

the MMX, 3D Now, SSE and AVX instruction sets [5]-[11]. 

Younger processor lineages like the IBM Power architecture 

have also evolved, perhaps less ornately, but show a similar 

process. 

Each of these evolutionary events replicated certain basic 

functions and structures: register sets, register load and store 

instructions and arithmetic operations. A consequence is that 

current processors allow you to perform a given calculation 

in many different ways using instructions that evolved at 

different times. 

Consider the simple operation that we might write in a high 

level language as a = a+1 and how this might be performed 

on an x86 lineage machine. 

If we used the most primitive style instructions descended 

from the 8080 we might code it as: 

mov eax,[a] 

add eax,1 

mov [a],eax 

or as 

mov eax,[a] 

inc eax 

mov [a],eax 

Adding the instructions from the 8086 vintage to the 

options we might try 

mov eax,[a] 
lea eax,[eax+1] 

mov [a],eax 

or simply 

inc dword[a] 

But then what about using the 'Eukaryotic' FPU 

instructions, which, after the 486 were always there: 

fild dword[a] 

fld1 
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faddp 

fistp dword[a] 

With the invention of the MMX and SSE instructions there 

are even more possibilities, for example we could use the 

xmm registers and generate the following sequence:  

movd xmm0,[a] 

movd xmm1,[one] 

paddd xmm0,xmm1 

movd [a],xmm0 

section .data 

one: dd 1 

Given such a plethora of mechanisms by which even such 

a simple calculation could be performed, how is the code 

generator of a compiler to select between them?  

To an extent this question that can be avoided, since, like 

bees and flowers, compilers have co-evolved with processors. 

They provided techniques for generating code for integer 

operations using the older instruction set before the new 

alternatives came along, and are likely to retain these 

primitive code patterns even after more alternatives became 

available. If one is writing an entirely new code generation 

system though, the problem of selection between a vast range 

of semantically equivalent code sequences strikes you afresh. 

However, if the processor manufacturers provided detailed 

timings for each instruction, as used to be done on early 

generations of microprocessors [9], this would be easy but 

more recent processor manuals [10] no longer provide these 

timings. One can infer a number of reasons for this: 

 The instructions are common to several chips with 

different internal structure which may have different 

numbers of clocks per instruction. 

 The timings will vary with the degree of super scalar 

execution. 

 They will vary with the degree of contention for 

execution units imposed by other instructions. 

In the absence of reliable instruction times, one can 

attempt to improve code selection based on other criteria, for 

example the number of instructions used to achieve a 

semantic effect, or the number of memory transfers 

scheduled by the instructions. But in the simple example 

given above, memory transfer counts are no help in 

distinguishing between the several options, nor do instruction 

counts give an unambiguous answer. Even if we were to 

favour the memory increment instruction on the grounds that 

it was the shortest, there is no guarantee that it would run 

faster than the first alternative since complex instructions like 

inc dword [a] will be broken down by the instruction decoder 

into a sequence of simpler micro-operations. The micro 

operations might well be the same as those executed by the 

explicit load, add, store sequences. 

 

II. EXPERIMENTAL CONFIGURATION 

At the University of Glasgow we have a code generator 

system that supports a significant spread of processor models, 

a range of CPUs in the x86 family as well as the chips used on 

the Playstation 2 and Playstation 3. The code generators are 

automatically written in Java by a compiler which uses as 

input machine descriptions in the ILCG’s notation ([11] 

appendix A), [12]. The code generators employ a unification 

 

 

 

 

 

The ordering of axioms can thus be crucial both to the 
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based technique similar to Prolog [13] and the overall 

approach is functionally motivated by the system described

in [14]. 

Unification was used in Prolog systems to construct 

logical proofs, and in our approach to code generation, the 

instructions available on machine M are like the axioms of a 

formal axiomatic system. The generation of machine code for 

a programme segment S is the construction of a proof from 

these axioms that S is derivable from the axiomatic system of 

machine M. A precondition for this to work is that the 

abstract source programme and the axioms are represented in 

the same notation. In our case we translate the source 

programmes into ILCG syntax trees. The 'axioms' of a given 

machine are its instructions and addressing modes. These are 

specified as patterns which are unified with the abstract 

syntax tree of the programme being translated, with 

successful unification resulting in the output of the 

corresponding instruction to the assembler file. The 

unification based pattern matching often involves the 

recursive elaboration of patterns. As in Prolog, the order in 

which patterns are matched can affect which of several 

possible matches will succeed. Nevertheless, the unification 

algorithm always outputs the first pattern/instruction whose 

matching succeeds. 

Where multiple alternative patterns are possible the 

algorithm will attempt to match them left to right:

pattern riscaddr

means [offset|baseplusoffsetf|regindir];

So in the above pattern which defines a selection of 

addressing modes, the unification algorithm will attempt to 

match a sub expression first against the offset addressing 

mode, then the base plus offset mode et al. The individual 

elements in the list are themselves patterns such as:

pattern baseplusoffsetf(reg r, offset s ) 

means[+( ^(r) , s)] 

assembles[ r '+' s ];

Consequently, a processor specification will contain 

hundreds of patterns describing things like sets of registers, 

addressing modes or instructions. An example of an 

instruction pattern is:

instruction pattern STORELIT(addrmode rm, type t, int 

s) 
means[ (ref t) rm:= (t) const s ] 

assembles['mov ' t ' 'rm ',' ' ' s];

The “means” part is what the unification algorithm 

matches against an abstract syntax tree and in the process 

unifies the parameters rm, t, s against the tree. The

“assembles” part specifies what assembly code is to be 

produced [11]. In this context the parameters are replaced by 

the assembly code that was produced by the matching of the 

sub-patterns.

The matching or proof process starts by attempting to 

match an abstract syntax tree against a list of all the 

axioms/patterns that specify the individual machine 

instructions. This list gives the individual instruction patterns 

a definite order. This order is the order of preference in which 

they will be matched to the abstract syntax. By moving an 

instruction pattern up this list we can cause the code 

generator to prefer to use that instruction over other 

alternatives.



  

efficiency of the resulting code, and indeed to whether a 

successful match is obtained at all. Unification of this sort is 

known to be potentially non-decidable [15]. With certain 

orderings of the patterns the process of finding a match is 

potentially non terminating. We avoid this by running the 

proof machine as a parallel process and giving it a time quota 

that is linear in the size of the tree for which it is trying to 

obtain a proof. In the past a considerably amount of human 

judgement has had to be used to obtain an order that seems 

likely both to terminate and to produce efficient code. Such 

human judgement, whilst certainly much better than nothing, 

can obviously have no guarantee of producing an optimal 

instruction ordering, given that the search space over which 

the selection has to be made is so great. With n instruction 

axioms, there are n! possible orderings or permutations in 

which they could be listed. It thus seemed an attractive idea to 

try and automate the ordering of instruction axioms. 

 

III. RELATED WORK 

Genetic algorithms have been used in computer science to 

seek for better solutions to various types of problems such 

memory bandwidth, code generator. 

A genetic algorithm approach was used to model the 

performance of memory-bound computations [5]. This 

approach was used to lean bandwidth and memory 

performance of many memory-intensive applications on 

different HPC architectures [5]. The genetic algorithm is 

based on the results of three main benchmarks; STREAM, 

Apex-MAPS, and MultiMAPS, to learn bandwidth as a 

function of cache hit rates on different machines and to 

predicate the achievable bandwidth from cache hit rates.  

Previous work using GAs for improving generated code 

include the Genetic Algorithm Parallelization System (GAPS) 

[1] which was used for optimizing parallel loop-based 

FORTRAN codes. Compiling FORTRAN programs to run 

on SPMD parallel machines usually involves loop 

transformations such as loop distribution, loop interchange, 

loop fusion or statement reordering [1]. GAPS was 

developed to find out the optimal transformation sequence 

that results in minimising the SPMD execution time of a 

given program.  

Wu and Li [2] also used GAs for improving machine code 

for a dual instruction set ARM processor. The ARM is 

heavily used in embedded applications. It supports, in 

additional to its standard instruction encoding, a more 

compactly encoded instruction set, called Thumb with 

shorter bit-lengths than the original instruction set. A 

program compiled using only Thumb instructions uses more 

instructions than the same program compiled using the 

standard instructions set, and it is consequently slower. 

Because the dual instruction sets could affect the efficiency 

of compiled programs in term of performance and space, a 

GA technique was used here to improve the code generator. 

The genetic algorithm and other tools helped a code 

generator to swap between the two instructions sets in order 

to reduce a program’s execution time and its code size.  

We differ from [1] and [2] in that we are attempting to 

ameliorate code generators while the other two approaches 

enhance the generated code for a single program at a time. By 

improving the code generator itself we only have to run the 

genetic algorithm during compiler development to obtain 

speed-ups in many programmes subsequently translated by 

the compiler. 

 

IV. GENETIC ALGORITHM DESIGN 

Genetic algorithms are a robust technique for searching 

large spaces on which some optimality criterion is defined 

[16]. The basic genetic algorithm procedure encodes 

solutions as a string and then works with mutation and 

crossover operations to generate new solutions. The 

population of solutions is repeatedly expanded by these 

operations and then shrunk by removing less 'fit' examples. A 

key issue in the application of genetic algorithms to a domain 

is designing a solution representation amenable to the 

mutation and crossover operators.  

A. Permutation Operation 

Permutation-based GAs is used for scheduling problems 

such as ordering instruction set or the Travelling Salesman 

Problem [3], [6]. The classical travelling salesman problem is 

a similar permutation problem to our own, since in both cases 

solutions can be represented as lists of elements; either cities 

or operation codes, in which each element must occur once. 

Assume that the n instruction patterns or cities are each given 

an integer in the range 0 ... n-1. Any solution must be a 

permutation of these integers which can be represented as a 

list with each integer presented only once. Using a simple list 

representation for the genome gives rise to problems with 

mutation and crossover operators as the result of applying 

them to the list is no longer necessarily a permutation. 

There has been past study of how to encode travelling 

salesman problems as Genetic Algorithms, a review of such 

encodings and modified mutation and crossover operators is 

given in [3]. 

In our case, we have chosen a novel three level 

representation for the genome: 

An initial list of length n=2m operation codes filled in with 

blanks if we have less than n operation codes for our 

processor. This will typically be our best hand generated 

operation code ordering. 

A permutation array p of length n made up of integers in 

the range 0 … n-1 in which each integer is presented exactly 

once. 

A bit string s of length n-1 that is the genome used for 

selection and breeding.  

The genome as a bit string does not itself encode the 

permutation but is instead a programme for a permutation 

machine. There is some similarity in this approach in to 

Chaitin's presentation of mutations as Turing Machine 

programmes that transform the genome [17]. 

Since in the process of doing this, programmes may be 

bred that are non terminating, and thus we used timeouts to 

detect potentially uncomputable unifications. This approach 

also resembles the procedure discussed in [17] where the goal 

is to use evolutionary programming to breed Turing Machine 

programmes to evaluate the BusyBeaver function. Chaitin’s 

approach resorts to linear time bounded approximation from 

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

514



  

below.  

Our permutation machine is less general than the Turing 

complete mutation machine used by Chaitin. Our 

permutation machine f reads in the bit string s and an initial 

valid permutation p and then performs a sequence of valid 

permutations on p such that q = f (s, p); the output q is another 

valid permutation. If we start with the identity permutation I 

= 0, 1, 2, 3..., then each permutation programme s labels a 

permutation ps produced by the application ps = f (s, I). 

The semantics of the permutation machine f also ensure 

that binary crossover between and mutation of permutation 

programmes will again yield a valid permutation programme. 

Now, if we assume that the permutation machine f code is as 

follows: 

b00 b10 b11 b20 b21 b22 b23 b30 b31 b32 b33 b34 b35 

b36 b37 b40…   

The permutation machine then proceeds as follows: 

if  b00 swap the 1st  half of  p with the 2nd half of p  

if  b10  swap the 1st quarter of p with the 2nd quarter of  p 

if  b11  swap the 3rd  quarter of p  with the 4th  quarter of p  

if  b20  swap the 1st  eighth of p  with the 2nd  eighth of p  

……. 

etc. 

Since the permutation of a permutation is still a 

permutation, and since swapping is a permutation operator, it 

is clear that the machine f will always produce a valid 

permutation of p if p is itself a valid permutation. Note that 

the first bit has more effect than the second and third, and that 

these have more effect than succeeding ones. In this aspect 

the encoding has some similarity to structured genetic 

algorithms [4] which are known to converge faster than 

unstructured ones. 

It is also evident that the space that can be searched using 

this representation is of the order 2n which is less than n! for 

all n>3. The space searched by the GA based on this genome 

will only be a fraction of the possible permutation space. 

Since n! is bounded above by 2( n log n), we could construct 

a permutation programme of length n log2 n bits that would 

be capable of producing any permutation. How can we do 

this using our existing permutation function f ? 

We need to apply log n independent permutations on the 

genome in sequence, and in order to do that we need a new 

function g(i ,  s ,  p ) which given an integer i : 0.. (log2 n) - 1 

a bit string s as before and a permutation p will generate the 

permutation rot(  f  (s , p ) , 2i ) that is to say it applies the 

permutation programme s to p as before and then cyclically 

rotates the permutation list by 2i places. Suppose we have a 

genome of length n log n with log n bit strings each of length 

n. We will denote the ith of these component bit strings as 

si. The complete permutation space can be scanned by 

composing g with itself log n times as follows: 

for
 

i:=0 to  ( log2 n
 

) -
 

1 
 

do p:
 

= g( i
 

,  si
 

,  p)
 

However, for realistic numbers of operation codes ( of the 

order of 100..200),
 
2n already represents a huge optimisation 

search space and gives the GA plenty of scope to find 

improvements, so our initial experiments used a genome of 

length 2[log2 n].
 

B. Crossover 

The crossover operation allows a new genome to be 

constructed that inherits information from two parent 

genomes. Our algorithm is based on the one-point crossover 

approach which basically picks a random point on both 

parent genome bit strings and then swaps the portions of the 

genomes above and below this point to produce new children 

as shown in Fig. 1. 

 
Fig. 1. Crossover operation. 

 

C. Mutation 

The copying of DNA in organisms is imperfect and 

introduces random code errors or mutations. In Genetic 

Algorithms one can emulate this by simply flipping m bits at 

random in a genome of length N. The ratio m / N should be 

set low to ensure that the algorithm will not degenerate to a 

random search. Our ameliorater inverts 2 arbitrary bits from 

the new child genome.  

D. How the Ameliorater Works 

The Genetic Algorithm ameliorater goes through the 

following steps: 

1) Create an initial population of genomes. This list will 

include the null permutation (all 0) and the all 1 

permutation, with the others being selected at random. 

2) From each genome s produce a permuted list of 

operation codes by using  

3) From this list of operation codes produce a modified 

processor specification file and invoke the compiler to 

produce a new code generator. 

4) Using the new code generator compile and run a set of 

test programmes. Compute the fitness of the genome as 

c = t where c = 1 if the programmes all compiled and 0 

otherwise and t is the total run time of the programmes. 

5) Select the fittest 2/3 of genomes, apply mutation and 

crossover to produce a new 1/3 to replace those 

discarded and repeat steps 2 to 4. 

The mutation rate was set to 2 bit flips per offspring, and 

the working population was set at 90. 

E. Results 

We tested the optimizer on two architectures: PowerPC 

and the IA32 with SSE2 instructions. The front end of the 

compiler was the same in both cases. The PowerPC generator 

we used was a sub-set generator for the Cell Broadband 

Engine in which only the common subset of instructions 

shared by the Cell and the Power PC were included. Tests 

were run on a Sony Playstation 3 running Linux. 

The optimizer was tested on both machines using the same 

benchmarks in its fitness function: an n-body simulation, a 

prime number seive and a vector kernel programme. The 

n-body problem, which uses single precision floating point, 

is a simulation of planets or particles evolving under the 

influence of gravity. The algorithm starts with an initial 
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position, mass and velocity of a number of bodies at a given 

time. It then uses that data to compute based on the laws of 

motion and gravitation the motions of all bodies and to find 

their positions at later times. It was taken from the 

Programming Languages Shootout website. The second 

application, which uses integer data types, is a prime sieve 

program. The program finds all the prime numbers that are 

less than or equal a given integer value n using Eratosthenes’ 

method. The last application is a special purpose program 

that was developed to test the Vector Pascal compilers [5] on 

various vector operations such as transpose, reduction, dot 

product operations etc over different data types. 

 

 
Fig. 2. The results of applying the GA to the hand improved code generator 

for the PowerPC processor in the Cell-BE.  

 

The performance of a genetic algorithm on optimizing a 

PowerPC instruction set ordering. The average fitness values 

reflect the performances of the code generators on three 

different applications. The code generators are generated 

using different solutions (IS orderings) offered by different 

generations. The higher the fitness scores the shorter the 

average execution time of the selected applications. 

To summarise the results, we present the average and the 

best fitness values of each generation. Note that for genomes 

which yield successful compilations, the fitness value is 

proportional to the performance of the final code. 

1) The PowerPC code generator 

The PowerPC machine description includes 184 

instructions, and thus the mutation probability here is around 

0.01. Fig. 2 shows that the average fitness of the solutions 

offered by the last generation is 3.4 times better than the 

solutions provided by the first generation. Fig. 2 shows also 

that the performances of the PowerPC code generators 

improved significantly throughout the first three successive 

generations. The first generation’s average fitness value was 

around 22.2 and at the fourth generation reached 

approximately 72.6 with an improvement factor of about 3.2. 

After the fourth generation, the algorithm then got steadier 

and just a slight improvement were gained in the last two 

generations. However, the best solution was obtained in the 

second generation, and it remained the best performance 

among all generations.  

In additional to the three testing programs, which were 

used in the fitness procedure to evaluate the algorithm, we 

also tested the optimizer using two other Shootout 

benchmarks; Spectral-norm and Mandelbrot. Spectral-norm 

is a program to calculate an eigenvalue using the power 

method. The final tests were conducted to see if we get the 

same performance improvement on applications using the 

optimized order of the PowerPC instruction set that was 

produced by our optimizer. Table I compares the 

performances of these five applications using a default 

instruction ordering and the optimized ordering. 
 

TABLE I: GENETIC ALGORITHM IMPROVEMENTS ON THE CELL-BE 

(THE FIRST 3 PROGRAMMES WERE IN THE TRAINING SET WHILE THE LAST 

TWO WERE IN THE TEST SET) 

Program 
Performance (Sec) 

Default GA Optimized  Improvement 

Sieve 26.5 20.6 22% 

N-Body 39.2 30.5 22% 

Vector Op’s 30.6 23.2 24% 

Spectral-norm 83.2 63.2 24% 

Mandelbrot 24.7 21.1 15% 

 

The results in the Table I show that the optimizer generally 

behaved about the same on most of the applications. Our 

interpretation for not getting the same improvement on the 

Mandelbrot benchmark as on the other applications is that all 

other applications were run many iterations while 

Mandelbrot was run only once.  

2) The IA32 code generator 

The IA32 machine instruction set description included 252 

instructions. This machine’s code generator, unlike the 

PowerPC’s one, had been under development for several 

years, and its instructions ordering had received a 

considerable manual tuning. The improvement due to the 

genetic algorithm is not expected to be as good as on the 

PowerPC. Fig. 3 shows that the average fitness is increasing 

slightly during the first three generations and declined and 

started improving after the fourth generation. As the diagram 

shows, the best solution was not improved during the six 

generations. This probably indicates that the instruction set 

was hand tuned to a close to optimal configuration. 

Fig. 4 represents a normalised performance gained by 

optimizing instruction orderings of both machines. The chart 

shows that the reordering of the PowerPC’s instruction set 

improved the performance of the PowerPC around 3 times 

while on Pentium the optimizer reports only a slight 

improvement because its instruction set was well tuned over 

several years. However, it is possible that more generations 

of the genetic algorithm might result in improvements, but 

they are clearly harder to find. 

 

V. CONCLUSIONS 

We have shown that it is possible to use genetic algorithms 

to produce a generalisable improvement in code generator 

performance. The improvement in code quality extends 

beyond the training set. However, the automatic genetic 

algorithm was unable to produce improvements in another 

code generator whose code selection rules had been 

subjected to many years of human optimisation.  

The experiments are relatively time consuming in 

computer time since each run of the fitness function on the 

genome involves the building of a new code generator in Java 

and its linking to the front end compiler, followed by the 

compilation of the test set along with the Pascal run time 

library with the new code generator. This build time is 
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considerably greater than the run time of the final test 

programmes. Despite this, the automatic process is: 

 Much faster than the process of hand optimisation that 

we had previously used. 

 Allows code generator optimisation to be done by less 

experienced team members such as final year students. 

 

 
Fig. 3. The results gained by optimizing previously manually optimised code 

generator for the Pentium using a genetic algorithm.  

 

The average fitness values reflect the performances of the 

code generators on the three selected applications. The higher 

the fitness scores the shorter the average execution time of 

the selected applications. 

 

 
Fig. 4. Normalized performance gained by optimizing instruction set 

orderings of PowerPC and Pentium 4 architecture using a genetic algorithm.  

 

The average fitness values reflect the performances of the 

code generators on three selected applications. 

In the future we intend to extend the work. We will modify 

the compiler itself so that it includes the genetic algorithm 

and can run in a training mode to ameliorate its own 

instruction selection rules. These rules can then be stored in 

an auxiliary file that is readable at code generator 

initialisation. We also intend to investigate the effect of more 

comprehensive genomes capable of searching over the entire 

n! permutation space of code rule orderings.  
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