

Abstract—Genetic algorithms (GAs) are based on techniques

inspired by some aspects of natural science such as inheritance,

reproduction and mutation, and they are used as optimization

technique for searching large solution spaces. In computer

science, for example, they could be used in data sorting and

searching, circuit design and to improve application

performance the quality of designed tools such as code

generation. This paper looks at the possibility of using genetic

algorithms to ameliorate the automatic construction of code

generators. Experimental evidence is provided that the use of

such algorithms can improve the quality of automatically

constructed code generators.

Index Terms—Genetic algorithms, compilers, code-selection,

permutation problem.

I. INTRODUCTION

Mass produced human artifacts undergo evolution in a

manner analogous to biological lineages. A mass produced

article like a car or a processor chip is the materialisation of a

pre-existing data structure produced in the design offices of

its manufacturing company. Firms retain elements of

previous designs in new products, with the design being

modified with successive product releases. This process

generates product lineages that, just as with biological ones,

allow the reconstruction of an ancestry. The theoretical

foundations of genetic algorithms (GAs) are based on

techniques inspired by some aspects of natural science such

as inheritance, reproduction and mutation.

An implementation of a standard GA starts by encoding a

feasible solution to a given problem on a simple data

structure; called chromosome, and apply genetic operators on

a set of potential solutions (population) in order to select

better solutions and reproduce new individuals (offspring).

Consequently, the new population is expected to be better

than the old population.

Genetic algorithms could be used as tools to evolve a

solution for several types of problems [1]-[7]. In computer

science, GAs could be used to predict performance of a given

application under certain circumstances or to improve the

quality of designed tools such as code generation. For

example, a genetic algorithm approach was used to model the

performance of memory-bound computations on different

architecture [5]. GAs has been also used to improve

generated code's execution time or its size [1], [2].

In the case of computer processors the most fundamental

Manuscript received June 10, 2013; revised August 17, 2013.

P. Cockshott is with the School of Computer Science, University of

Glasgow, USA (e-mail: wpc@dcs.gla.ac.uk).

Y. Gdura was with Computer Engineering Department, University of

Tripoli, USA (e-mail: ygdura@tripoliuniv.edu.ly).

part of the inherited design is the instruction set, and it is this

that we can view as the inherited genome. The process of

evolution of the Intel x86 processor families, for example, is

a history of genetic accretion from the genetic code

Ur-microprocessor the 4004, through the 8008, 8080, 8086

etc, down to modern chips like the SandyBridge [8]. We even

see processes analogous to the formation of the Eukaryota

when formerly free living organisms were ingested and

incorporated as organelles: mitochondria and chloroplasts.

The incorporation of these organelles led to the Eukaryota

having dual genomes - nuclear and mitochondrial DNA for

animals. In the Intel/AMD/Transmeta/VIA etc lineage the

equivalent to the Eukaryotic Revolution was the ingestion of

the formerly free living x87 floating point processor into the

486. Since then the processor lineage has incorporated two

distinct genomes for floating point and integer code. Further

events analogous to chromosome duplication and subsequent

specialisation led to the generation of sub-families inheriting

the MMX, 3D Now, SSE and AVX instruction sets [5]-[11].

Younger processor lineages like the IBM Power architecture

have also evolved, perhaps less ornately, but show a similar

process.

Each of these evolutionary events replicated certain basic

functions and structures: register sets, register load and store

instructions and arithmetic operations. A consequence is that

current processors allow you to perform a given calculation

in many different ways using instructions that evolved at

different times.

Consider the simple operation that we might write in a high

level language as a = a+1 and how this might be performed

on an x86 lineage machine.

If we used the most primitive style instructions descended

from the 8080 we might code it as:

mov eax,[a]

add eax,1

mov [a],eax

or as

mov eax,[a]

inc eax

mov [a],eax

Adding the instructions from the 8086 vintage to the

options we might try

mov eax,[a]
lea eax,[eax+1]

mov [a],eax

or simply

inc dword[a]

But then what about using the 'Eukaryotic' FPU

instructions, which, after the 486 were always there:

fild dword[a]

fld1

Code Generator Amelioration Using Genetic Algorithm

Techniques

P. Cockshott and Y.Gdura

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

512DOI: 10.7763/IJIMT.2013.V4.453

faddp

fistp dword[a]

With the invention of the MMX and SSE instructions there

are even more possibilities, for example we could use the

xmm registers and generate the following sequence:

movd xmm0,[a]

movd xmm1,[one]

paddd xmm0,xmm1

movd [a],xmm0

section .data

one: dd 1

Given such a plethora of mechanisms by which even such

a simple calculation could be performed, how is the code

generator of a compiler to select between them?

To an extent this question that can be avoided, since, like

bees and flowers, compilers have co-evolved with processors.

They provided techniques for generating code for integer

operations using the older instruction set before the new

alternatives came along, and are likely to retain these

primitive code patterns even after more alternatives became

available. If one is writing an entirely new code generation

system though, the problem of selection between a vast range

of semantically equivalent code sequences strikes you afresh.

However, if the processor manufacturers provided detailed

timings for each instruction, as used to be done on early

generations of microprocessors [9], this would be easy but

more recent processor manuals [10] no longer provide these

timings. One can infer a number of reasons for this:

 The instructions are common to several chips with

different internal structure which may have different

numbers of clocks per instruction.

 The timings will vary with the degree of super scalar

execution.

 They will vary with the degree of contention for

execution units imposed by other instructions.

In the absence of reliable instruction times, one can

attempt to improve code selection based on other criteria, for

example the number of instructions used to achieve a

semantic effect, or the number of memory transfers

scheduled by the instructions. But in the simple example

given above, memory transfer counts are no help in

distinguishing between the several options, nor do instruction

counts give an unambiguous answer. Even if we were to

favour the memory increment instruction on the grounds that

it was the shortest, there is no guarantee that it would run

faster than the first alternative since complex instructions like

inc dword [a] will be broken down by the instruction decoder

into a sequence of simpler micro-operations. The micro

operations might well be the same as those executed by the

explicit load, add, store sequences.

II. EXPERIMENTAL CONFIGURATION

At the University of Glasgow we have a code generator

system that supports a significant spread of processor models,

a range of CPUs in the x86 family as well as the chips used on

the Playstation 2 and Playstation 3. The code generators are

automatically written in Java by a compiler which uses as

input machine descriptions in the ILCG’s notation ([11]

appendix A), [12]. The code generators employ a unification

The ordering of axioms can thus be crucial both to the

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

513

based technique similar to Prolog [13] and the overall

approach is functionally motivated by the system described

in [14].

Unification was used in Prolog systems to construct

logical proofs, and in our approach to code generation, the

instructions available on machine M are like the axioms of a

formal axiomatic system. The generation of machine code for

a programme segment S is the construction of a proof from

these axioms that S is derivable from the axiomatic system of

machine M. A precondition for this to work is that the

abstract source programme and the axioms are represented in

the same notation. In our case we translate the source

programmes into ILCG syntax trees. The 'axioms' of a given

machine are its instructions and addressing modes. These are

specified as patterns which are unified with the abstract

syntax tree of the programme being translated, with

successful unification resulting in the output of the

corresponding instruction to the assembler file. The

unification based pattern matching often involves the

recursive elaboration of patterns. As in Prolog, the order in

which patterns are matched can affect which of several

possible matches will succeed. Nevertheless, the unification

algorithm always outputs the first pattern/instruction whose

matching succeeds.

Where multiple alternative patterns are possible the

algorithm will attempt to match them left to right:

pattern riscaddr

means [offset|baseplusoffsetf|regindir];

So in the above pattern which defines a selection of

addressing modes, the unification algorithm will attempt to

match a sub expression first against the offset addressing

mode, then the base plus offset mode et al. The individual

elements in the list are themselves patterns such as:

pattern baseplusoffsetf(reg r, offset s)

means[+(^(r) , s)]

assembles[r '+' s];

Consequently, a processor specification will contain

hundreds of patterns describing things like sets of registers,

addressing modes or instructions. An example of an

instruction pattern is:

instruction pattern STORELIT(addrmode rm, type t, int

s)
means[(ref t) rm:= (t) const s]

assembles['mov ' t ' 'rm ',' ' ' s];

The “means” part is what the unification algorithm

matches against an abstract syntax tree and in the process

unifies the parameters rm, t, s against the tree. The

“assembles” part specifies what assembly code is to be

produced [11]. In this context the parameters are replaced by

the assembly code that was produced by the matching of the

sub-patterns.

The matching or proof process starts by attempting to

match an abstract syntax tree against a list of all the

axioms/patterns that specify the individual machine

instructions. This list gives the individual instruction patterns

a definite order. This order is the order of preference in which

they will be matched to the abstract syntax. By moving an

instruction pattern up this list we can cause the code

generator to prefer to use that instruction over other

alternatives.

efficiency of the resulting code, and indeed to whether a

successful match is obtained at all. Unification of this sort is

known to be potentially non-decidable [15]. With certain

orderings of the patterns the process of finding a match is

potentially non terminating. We avoid this by running the

proof machine as a parallel process and giving it a time quota

that is linear in the size of the tree for which it is trying to

obtain a proof. In the past a considerably amount of human

judgement has had to be used to obtain an order that seems

likely both to terminate and to produce efficient code. Such

human judgement, whilst certainly much better than nothing,

can obviously have no guarantee of producing an optimal

instruction ordering, given that the search space over which

the selection has to be made is so great. With n instruction

axioms, there are n! possible orderings or permutations in

which they could be listed. It thus seemed an attractive idea to

try and automate the ordering of instruction axioms.

III. RELATED WORK

Genetic algorithms have been used in computer science to

seek for better solutions to various types of problems such

memory bandwidth, code generator.

A genetic algorithm approach was used to model the

performance of memory-bound computations [5]. This

approach was used to lean bandwidth and memory

performance of many memory-intensive applications on

different HPC architectures [5]. The genetic algorithm is

based on the results of three main benchmarks; STREAM,

Apex-MAPS, and MultiMAPS, to learn bandwidth as a

function of cache hit rates on different machines and to

predicate the achievable bandwidth from cache hit rates.

Previous work using GAs for improving generated code

include the Genetic Algorithm Parallelization System (GAPS)

[1] which was used for optimizing parallel loop-based

FORTRAN codes. Compiling FORTRAN programs to run

on SPMD parallel machines usually involves loop

transformations such as loop distribution, loop interchange,

loop fusion or statement reordering [1]. GAPS was

developed to find out the optimal transformation sequence

that results in minimising the SPMD execution time of a

given program.

Wu and Li [2] also used GAs for improving machine code

for a dual instruction set ARM processor. The ARM is

heavily used in embedded applications. It supports, in

additional to its standard instruction encoding, a more

compactly encoded instruction set, called Thumb with

shorter bit-lengths than the original instruction set. A

program compiled using only Thumb instructions uses more

instructions than the same program compiled using the

standard instructions set, and it is consequently slower.

Because the dual instruction sets could affect the efficiency

of compiled programs in term of performance and space, a

GA technique was used here to improve the code generator.

The genetic algorithm and other tools helped a code

generator to swap between the two instructions sets in order

to reduce a program’s execution time and its code size.

We differ from [1] and [2] in that we are attempting to

ameliorate code generators while the other two approaches

enhance the generated code for a single program at a time. By

improving the code generator itself we only have to run the

genetic algorithm during compiler development to obtain

speed-ups in many programmes subsequently translated by

the compiler.

IV. GENETIC ALGORITHM DESIGN

Genetic algorithms are a robust technique for searching

large spaces on which some optimality criterion is defined

[16]. The basic genetic algorithm procedure encodes

solutions as a string and then works with mutation and

crossover operations to generate new solutions. The

population of solutions is repeatedly expanded by these

operations and then shrunk by removing less 'fit' examples. A

key issue in the application of genetic algorithms to a domain

is designing a solution representation amenable to the

mutation and crossover operators.

A. Permutation Operation

Permutation-based GAs is used for scheduling problems

such as ordering instruction set or the Travelling Salesman

Problem [3], [6]. The classical travelling salesman problem is

a similar permutation problem to our own, since in both cases

solutions can be represented as lists of elements; either cities

or operation codes, in which each element must occur once.

Assume that the n instruction patterns or cities are each given

an integer in the range 0 ... n-1. Any solution must be a

permutation of these integers which can be represented as a

list with each integer presented only once. Using a simple list

representation for the genome gives rise to problems with

mutation and crossover operators as the result of applying

them to the list is no longer necessarily a permutation.

There has been past study of how to encode travelling

salesman problems as Genetic Algorithms, a review of such

encodings and modified mutation and crossover operators is

given in [3].

In our case, we have chosen a novel three level

representation for the genome:

An initial list of length n=2m operation codes filled in with

blanks if we have less than n operation codes for our

processor. This will typically be our best hand generated

operation code ordering.

A permutation array p of length n made up of integers in

the range 0 … n-1 in which each integer is presented exactly

once.

A bit string s of length n-1 that is the genome used for

selection and breeding.

The genome as a bit string does not itself encode the

permutation but is instead a programme for a permutation

machine. There is some similarity in this approach in to

Chaitin's presentation of mutations as Turing Machine

programmes that transform the genome [17].

Since in the process of doing this, programmes may be

bred that are non terminating, and thus we used timeouts to

detect potentially uncomputable unifications. This approach

also resembles the procedure discussed in [17] where the goal

is to use evolutionary programming to breed Turing Machine

programmes to evaluate the BusyBeaver function. Chaitin’s

approach resorts to linear time bounded approximation from

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

514

below.

Our permutation machine is less general than the Turing

complete mutation machine used by Chaitin. Our

permutation machine f reads in the bit string s and an initial

valid permutation p and then performs a sequence of valid

permutations on p such that q = f (s, p); the output q is another

valid permutation. If we start with the identity permutation I

= 0, 1, 2, 3..., then each permutation programme s labels a

permutation ps produced by the application ps = f (s, I).

The semantics of the permutation machine f also ensure

that binary crossover between and mutation of permutation

programmes will again yield a valid permutation programme.

Now, if we assume that the permutation machine f code is as

follows:

b00 b10 b11 b20 b21 b22 b23 b30 b31 b32 b33 b34 b35

b36 b37 b40…

The permutation machine then proceeds as follows:

if b00 swap the 1st half of p with the 2nd half of p

if b10 swap the 1st quarter of p with the 2nd quarter of p

if b11 swap the 3rd quarter of p with the 4th quarter of p

if b20 swap the 1st eighth of p with the 2nd eighth of p

…….

etc.

Since the permutation of a permutation is still a

permutation, and since swapping is a permutation operator, it

is clear that the machine f will always produce a valid

permutation of p if p is itself a valid permutation. Note that

the first bit has more effect than the second and third, and that

these have more effect than succeeding ones. In this aspect

the encoding has some similarity to structured genetic

algorithms [4] which are known to converge faster than

unstructured ones.

It is also evident that the space that can be searched using

this representation is of the order 2n which is less than n! for

all n>3. The space searched by the GA based on this genome

will only be a fraction of the possible permutation space.

Since n! is bounded above by 2(n log n), we could construct

a permutation programme of length n log2 n bits that would

be capable of producing any permutation. How can we do

this using our existing permutation function f ?

We need to apply log n independent permutations on the

genome in sequence, and in order to do that we need a new

function g(i , s , p) which given an integer i : 0.. (log2 n) - 1

a bit string s as before and a permutation p will generate the

permutation rot(f (s , p) , 2i) that is to say it applies the

permutation programme s to p as before and then cyclically

rotates the permutation list by 2i places. Suppose we have a

genome of length n log n with log n bit strings each of length

n. We will denote the ith of these component bit strings as

si. The complete permutation space can be scanned by

composing g with itself log n times as follows:

for

i:=0 to (log2 n

) -

1

do p:

= g(i

, si

, p)

However, for realistic numbers of operation codes (of the

order of 100..200),

2n already represents a huge optimisation

search space and gives the GA plenty of scope to find

improvements, so our initial experiments used a genome of

length 2[log2 n].

B. Crossover

The crossover operation allows a new genome to be

constructed that inherits information from two parent

genomes. Our algorithm is based on the one-point crossover

approach which basically picks a random point on both

parent genome bit strings and then swaps the portions of the

genomes above and below this point to produce new children

as shown in Fig. 1.

Fig. 1. Crossover operation.

C. Mutation

The copying of DNA in organisms is imperfect and

introduces random code errors or mutations. In Genetic

Algorithms one can emulate this by simply flipping m bits at

random in a genome of length N. The ratio m / N should be

set low to ensure that the algorithm will not degenerate to a

random search. Our ameliorater inverts 2 arbitrary bits from

the new child genome.

D. How the Ameliorater Works

The Genetic Algorithm ameliorater goes through the

following steps:

1) Create an initial population of genomes. This list will

include the null permutation (all 0) and the all 1

permutation, with the others being selected at random.

2) From each genome s produce a permuted list of

operation codes by using

3) From this list of operation codes produce a modified

processor specification file and invoke the compiler to

produce a new code generator.

4) Using the new code generator compile and run a set of

test programmes. Compute the fitness of the genome as

c = t where c = 1 if the programmes all compiled and 0

otherwise and t is the total run time of the programmes.

5) Select the fittest 2/3 of genomes, apply mutation and

crossover to produce a new 1/3 to replace those

discarded and repeat steps 2 to 4.

The mutation rate was set to 2 bit flips per offspring, and

the working population was set at 90.

E. Results

We tested the optimizer on two architectures: PowerPC

and the IA32 with SSE2 instructions. The front end of the

compiler was the same in both cases. The PowerPC generator

we used was a sub-set generator for the Cell Broadband

Engine in which only the common subset of instructions

shared by the Cell and the Power PC were included. Tests

were run on a Sony Playstation 3 running Linux.

The optimizer was tested on both machines using the same

benchmarks in its fitness function: an n-body simulation, a

prime number seive and a vector kernel programme. The

n-body problem, which uses single precision floating point,

is a simulation of planets or particles evolving under the

influence of gravity. The algorithm starts with an initial

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

515

f(s, I).

position, mass and velocity of a number of bodies at a given

time. It then uses that data to compute based on the laws of

motion and gravitation the motions of all bodies and to find

their positions at later times. It was taken from the

Programming Languages Shootout website. The second

application, which uses integer data types, is a prime sieve

program. The program finds all the prime numbers that are

less than or equal a given integer value n using Eratosthenes’

method. The last application is a special purpose program

that was developed to test the Vector Pascal compilers [5] on

various vector operations such as transpose, reduction, dot

product operations etc over different data types.

Fig. 2. The results of applying the GA to the hand improved code generator

for the PowerPC processor in the Cell-BE.

The performance of a genetic algorithm on optimizing a

PowerPC instruction set ordering. The average fitness values

reflect the performances of the code generators on three

different applications. The code generators are generated

using different solutions (IS orderings) offered by different

generations. The higher the fitness scores the shorter the

average execution time of the selected applications.

To summarise the results, we present the average and the

best fitness values of each generation. Note that for genomes

which yield successful compilations, the fitness value is

proportional to the performance of the final code.

1) The PowerPC code generator

The PowerPC machine description includes 184

instructions, and thus the mutation probability here is around

0.01. Fig. 2 shows that the average fitness of the solutions

offered by the last generation is 3.4 times better than the

solutions provided by the first generation. Fig. 2 shows also

that the performances of the PowerPC code generators

improved significantly throughout the first three successive

generations. The first generation’s average fitness value was

around 22.2 and at the fourth generation reached

approximately 72.6 with an improvement factor of about 3.2.

After the fourth generation, the algorithm then got steadier

and just a slight improvement were gained in the last two

generations. However, the best solution was obtained in the

second generation, and it remained the best performance

among all generations.

In additional to the three testing programs, which were

used in the fitness procedure to evaluate the algorithm, we

also tested the optimizer using two other Shootout

benchmarks; Spectral-norm and Mandelbrot. Spectral-norm

is a program to calculate an eigenvalue using the power

method. The final tests were conducted to see if we get the

same performance improvement on applications using the

optimized order of the PowerPC instruction set that was

produced by our optimizer. Table I compares the

performances of these five applications using a default

instruction ordering and the optimized ordering.

TABLE I: GENETIC ALGORITHM IMPROVEMENTS ON THE CELL-BE

(THE FIRST 3 PROGRAMMES WERE IN THE TRAINING SET WHILE THE LAST

TWO WERE IN THE TEST SET)

Program
Performance (Sec)

Default GA Optimized Improvement

Sieve 26.5 20.6 22%

N-Body 39.2 30.5 22%

Vector Op’s 30.6 23.2 24%

Spectral-norm 83.2 63.2 24%

Mandelbrot 24.7 21.1 15%

The results in the Table I show that the optimizer generally

behaved about the same on most of the applications. Our

interpretation for not getting the same improvement on the

Mandelbrot benchmark as on the other applications is that all

other applications were run many iterations while

Mandelbrot was run only once.

2) The IA32 code generator

The IA32 machine instruction set description included 252

instructions. This machine’s code generator, unlike the

PowerPC’s one, had been under development for several

years, and its instructions ordering had received a

considerable manual tuning. The improvement due to the

genetic algorithm is not expected to be as good as on the

PowerPC. Fig. 3 shows that the average fitness is increasing

slightly during the first three generations and declined and

started improving after the fourth generation. As the diagram

shows, the best solution was not improved during the six

generations. This probably indicates that the instruction set

was hand tuned to a close to optimal configuration.

Fig. 4 represents a normalised performance gained by

optimizing instruction orderings of both machines. The chart

shows that the reordering of the PowerPC’s instruction set

improved the performance of the PowerPC around 3 times

while on Pentium the optimizer reports only a slight

improvement because its instruction set was well tuned over

several years. However, it is possible that more generations

of the genetic algorithm might result in improvements, but

they are clearly harder to find.

V. CONCLUSIONS

We have shown that it is possible to use genetic algorithms

to produce a generalisable improvement in code generator

performance. The improvement in code quality extends

beyond the training set. However, the automatic genetic

algorithm was unable to produce improvements in another

code generator whose code selection rules had been

subjected to many years of human optimisation.

The experiments are relatively time consuming in

computer time since each run of the fitness function on the

genome involves the building of a new code generator in Java

and its linking to the front end compiler, followed by the

compilation of the test set along with the Pascal run time

library with the new code generator. This build time is

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

516

considerably greater than the run time of the final test

programmes. Despite this, the automatic process is:

 Much faster than the process of hand optimisation that

we had previously used.

 Allows code generator optimisation to be done by less

experienced team members such as final year students.

Fig. 3. The results gained by optimizing previously manually optimised code

generator for the Pentium using a genetic algorithm.

The average fitness values reflect the performances of the

code generators on the three selected applications. The higher

the fitness scores the shorter the average execution time of

the selected applications.

Fig. 4. Normalized performance gained by optimizing instruction set

orderings of PowerPC and Pentium 4 architecture using a genetic algorithm.

The average fitness values reflect the performances of the

code generators on three selected applications.

In the future we intend to extend the work. We will modify

the compiler itself so that it includes the genetic algorithm

and can run in a training mode to ameliorate its own

instruction selection rules. These rules can then be stored in

an auxiliary file that is readable at code generator

initialisation. We also intend to investigate the effect of more

comprehensive genomes capable of searching over the entire

n! permutation space of code rule orderings.

REFERENCES

[1] A. Nisbet, “GAPS, Iterative feedback directed parallelisation using

genetic algorithms,” in Proc. the Workshop on Profile and

Feedback-Directed Compilation, 1998.

[2] S. Wu and L. S. Kun, “Instruction selection for arm/thumb processors

based on a genetic algorithm coupled with critical event tabu search,”

Chinese Journal of Computers 4, pp. 680-685, 2007.

[3] P. Larranaga, C. Kuijpers, R. Murga, I. Inza, and S. Dizdarevic,

“Genetic algorithms for the travelling salesman problem: A review of

representations and operators,” Artificial Intelligence Review, vol. 13,

no. 2, pp. 129–170, 1999.

[4] D. Dasgupta and D. McGregor, “Nonstationary function optimization

using the structured genetic algorithm,” Parallel Problem Solving

from Nature, vol. 2, pp. 145–154, 1992.

[5] M Tikir, L.vCarrington, E.vStrohmaier, and A. Snavely, “A genetic

algorithms approach to modeling the performance of memory-bound

computations,” in Proc. the 2007 ACM/IEEE Conference on

Supercomputing (SC '07), 2007, pp. 1-12.

[6] J. Bryant, “Naive and heuristic permutation-coded genetic algorithms

for the quadratic knapsack problem,” in Proc. the Fourteenth

International Conference on Genetic and Evolutionary Computation

Conference Companion, 2012, pp. 1465-1466.

[7] G. Ahmadreza, A. Kamilia, and F. Nicholas, “Sorting unsigned

permutations by reversals using multi-objective evolutionary

algorithms with variable size individuals,” Evolutionary Computation

(CEC), pp. 292-295, 2011.

[8] List of intel microprocessors. [Online]. Available:

http://en.wikipedia.org/wiki/List_of_Intel_microprocessors.

[9] MCS-85 Users Manual, Intel, 1977.

[10] Intel 64 and IA-32 Architectures Software Developer’s Manual, Intel,

2010.

[11]

[12] P. Cockshott, “The Glasgow pascal compiler,” Lulu, 2012.

[13] D.Warren and A. Center, “An abstract Prolog instruction set,”

Technical Note 309, SRI International, Artificial Intelligence Center,

Menlo Park, CA, October 1983.

[14] S. L. Graham, “Table driven code generation,” IEEE Computer, vol.

13, no. 8, pp. 25–37. 1980.

[15] G. Huet, “The undecidability of unification in third order logic,”

Information and Control, vol. 22, no. 3, pp. 257–267, 1973.

[16]

[17]

P. Cockshott was trained at McMaster, Manchester,

Heriot Watt and Edinburgh Universities. Originally an

economist, he later studied computer science. He worked

in industry on hardware verification and on the design of

database machines. He has been a researcher or academic

at the universities of Edinburgh, Glasgow and Strathclyde

and is now a reader in computer science at the University

of Glasgow. His past research includes persistent programming, database

machines, FPGA architectures, data and video compression, and the theory

of economic planning. His current research interests are: SIMD and

multi-core compilers, econophysics and the physical foundations of

computability.

Y. Gdura was born in Tripoli – Libya in 1961. He had his

bachelor degree in Computer Engineering from the Higher

Institute of Electronics (HIE) in Libya 1982. He got his

master degree in computer science from University of

Concordia in Canada in 2001, and he got his PhD from

University of Glasgow 2012. He worked in government

institutions on software development. He also worked as a

general manager of IT and Telecoms Company in the private sector in Libya.

His is working right now at the University of Tripoli, Libya.

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

517

P. Cockshott and K. Renfrew, SIMD programming for Windows and

Linux, Springer, 2004.

D. Whitley, “A genetic algorithm tutorial,” Statistics and computing,

vol. 4, no. 2, pp. 65–85, 1994.

G. Chaitin. (2010). A mathematical theory of evolution and biological

creativity. Tech. Rep. CDMTCS-397. University of Auckland, URL.

[Online]. Available:

http://www.cs.auckland.ac.nz/CDMTCS//researchreports/397greg.pd

f.

http://en.wikipedia.org/wiki/List_of_Intel_microprocessors
http://www.cs.auckland.ac.nz/CDMTCS/research

