

Abstract—Data stream mining research has gained

importance in the recent years due to the generation of vast

amount of data streams by many applications. Transactional

data streams are characterized by high dimensionality and high

cardinality. The transactional data streams arrive at a very

high speed in an unbounded form. Clustering is an important

core data mining activity that provides valuable insights into

the data being processed. Clustering Transactional stream is a

highly challenging activity as it is bound to single pass

constraint as well as memory and CPU constraints. In this

context an efficient algorithm is proposed to cluster the

transactional data streams. The proposed algorithm accounts

for the resource constraints. Extensive experimental analysis of

the proposed algorithm on the real and synthetic data

demonstrates the scalability and efficiency of the algorithm.

Index Terms—Cluster histogram, data streams, data stream

clustering, resource adaptation, sliding window model.

I. INTRODUCTION

With the advances in data collection techniques and

communication technology, many organizations receive vast

amount of data at very high rates. Some of the examples that

can be given in this context are – sensor networks, network

traffic control and web usage monitoring. In all these

examples there is high rate of data accumulation coupled

with constant changes in the characteristics of data. Such type

of data is called data streams. More formally, a data stream is

an ordered sequence of data records that can be read only

once or a small number of times. Retail chain transactions,

web logs, credit card transaction flows and real time stock

exchange data are some of the examples of data streams in

real life scenario. The characteristics of data stream includes

[1], [2]: huge volume of continuous data, possibly infinite,

fast changing and requiring real time response, sequential

single pass constraint, multi-level and multidimensional

processing. Due to the unique characteristics of the data

stream traditional algorithms have to be modified to handle

the data streams.

A challenging problem in the area of data stream mining is

to cluster the data stream [3]. Clustering can be considered

the most important unsupervised learning problem; so, as

every other problem of this kind, it deals with finding a

structure in a collection of unlabeled data. Clustering refers

to the process of grouping a collection of objects into classes

or “clusters” such that objects within the same class are

Manuscript received June 4, 2013; revised August 18, 2013.

Hassan, India (e-mail; jc@mcehassan.ac.in).

K. R. Ananda Kumar is with Department of Computer Science, SJBIT,

Bangalore (e-mail:kr_mega@hotmail.com).

similar in a certain sense, and objects from different classes

are dissimilar. Transactional data is a kind of special

categorical data, and typical examples are market basket data,

web usage data, customer profiles, patient symptoms records,

and image features. Transactional data are generated by many

applications from areas, such as retail industry, ecommerce,

healthcare, Customer Relationship management and so forth.

The volume of transactional data is usually large. Therefore,

there are great demands for fast and yet high-quality

algorithms for clustering transactional datasets. Fast and

accurate clustering of transactional data has many potential

applications in retail industry, e-commerce intelligence, etc.

In the data stream settings the set of transactional data to be

analyzed is application dependent. It can be the whole data

stream or a part of it depending on the purpose of clustering.

To gain a better understanding about this transactional data

streams are clustered. Recently, more attention has been put

on clustering categorical data [4], where records are made up

of non-numerical attributes. When clustering transactional

data streams it is very much important to account for the

available resources like memory and CPU time.

The recent work in the area of clustering data streams

focus only on clustering numerical data values. Even though

a few algorithms are developed for clustering categorical data

stream none of them make an effort to cluster transactional

data stream in a resource efficient manner. As such an effort

has been made to develop a novel algorithm that clusters the

transactional data stream in a resource adaptive way.

Given a transactional data stream , the problem is to

partition it into a number of clusters so that same type of

transactions are in the same cluster, in other words intra

cluster similarity is maximized and inter cluster similarity is

minimized. This task is to be done in a resource adaptive

manner. That is during the course of execution of the

algorithm, if at any instance the algorithm runs out of

memory space then the algorithm tries to continue its

execution with a little compromise on the quality of output

cluster. The mathematical formulation of the same can be

given as

J. Chandrika and K. R. Ananda Kumar

A Novel Approach for Clustering Categorical Data

Streams

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

486DOI: 10.7763/IJIMT.2013.V4.447

J. Chandrika is with Dept. of Computer Science and Engineering, MCE,

Maximize Similarity =
1 1

(, ())
k n

i j

S Tij rep ck

where S is the similarity measure, k denotes the number of

clusters, n denotes the number of records in a given cluster,

Tij denotes jth transaction in cluster i, rep (ck) represents the

representative of cluster under consideration.

The rest of the paper is organized as follows Section II

reviews the related work carried out in the context of

clustering categorical streams. Section III explains the novel

algorithm proposed. Section IV gives the details of

experimental evaluation. Finally Section V concludes the

paper with directions for the possible future work.

II. RELATED WORK

The main challenge in clustering the data streams is to

handle the evolving data. Aggarwal et al. [1] has proposed a

framework for clustering the evolving streams. It splits the

process of clustering into an online micro clustering

component subjected to single pass constraint and an offline

macro clustering component which is not constrained. The

Clustream algorithm which is based on this framework deals

with d dimensional numeric data. The summary information

is stored as the sum of squared data values and sum of data

values for each dimension together with sum of squares of

timestamps and sum of timestamps for the data points in the

cluster. This approach for storing summary information is

suitable for handling numeric data and not categorical data.

In the recent past a few algorithms are developed for

handling categorical data. The Kmode algorithm [5] is the

extension of Kmeans [6] which can handle only numerical

data streams. The cluster is represented by a vector that has

minimal distance to all the points. The distance is measured

by number of common attributes shared by two data values,

considering optimal weights for different attribute values.

Since this algorithm requires the user to specify the number

of clusters as input it produces K clusters regardless of

underlying cluster structure. Wang et al. have proposed

Largeitem [7] .It works in two phases: Allocation phase and

refinement phase. In the allocation phase every transaction

read will be moved to an existing cluster or a new cluster will

be created whichever minimizes the cost. In refinement phase

the original allocation made will be changed based on re

computation of cost function. Because of two passes it is not

suitable for data streams. ROCK [8] is based on the

assumption that an attribute value, in addition to its

occurrence, should be examined according to the number of

other attribute values it exists with. ROCK works totally

differently than k-modes not only because it is hierarchical

but also due to the fact that it works on samples of the data.

The main disadvantage of ROCK is that it employs sampling

for scaling up to larger datasets and the results of clustering

highly depend on it. CACTUS [9], an approach that entails

the computation of summaries from the underlying data set (a

concept similar to the one used in BIRCH [10]. CACTUS’s

summaries have to do with the support of pairs of attribute

values from different attributes and the similarity of values

that belong to the same attribute. The disadvantage of this

algorithm is that, as the number of dimensions grows, when

computing the summaries, each attribute value of a tuple is

compared with every other value while the results can be kept

in main memory only if the domain size of every attribute is

very small. CLOPE [4] uses histogram as the summary

structure for representing the cluster. The cost function used

for clustering tries to minimize the height to width ratio of the

histogram because a larger height implies more overlapping

items and hence more intra cluster similarity. CLOPE is a

cluster seeking algorithm that produces clusters based on user

expectation of intra cluster similarity controlled by a user

input called repulsion factor. Choosing a proper value for the

repulsion factor is a challenging task. CLOPE requires

multiple scans of the data, where the number of iteration

depends on the desired level of intra-cluster similarity. This

violates the one-pass requirement. Furthermore, CLOPE

requires multiple evaluation of the clustering criterion for

each record, an expensive operation when the size of the

stream is massive. INCLUS [11] is an algorithm that clusters

transactional data streams using two variants of sliding

window model one is equal width model and the other is

elastic model. This algorithm uses the similarity measure as

given by equation (4) of section 2. Most of these algorithms

try to produce the clusters taking into account the available

computational requirements like memory and CPU time and

the required resources as such the scalability of these

algorithms is questionable. However some of the recent

works focus on resource adaptation and quality assurance.

Two such algorithms are proposed for finding frequent

itemsets in data streams [12], [13]. RVFKM [14] is a resource

aware very fast Kmeans algorithm that is applicable to

numeric data streams in ubiquitous environment using the

algorithm output granularity approach that is the algorithm

controls the amount of output generated so that it can be

handled with available resources. The concept of resource

awareness is incorporated for processing the data streams

generated by wireless sensor network by designing a

resource aware framework for sun SPOT sensor node [15].

An online adaptive clustering algorithm called ERA Cluster

is developed in Java. It is an online clustering algorithm

which uses a threshold value to reduce the data generated by

the sensor node so that it can be processed offline later. The

algorithm is capable of adapting itself to the change in the

battery level, remaining memory and CPU utilization. The

algorithm uses Manhattan distance rather than the normally

used Euclidian distance. Input adaptation using load

shedding and data synopsis creation using wavelets have

been proposed in [16], The Ideas proposed by these resource

adaptive algorithms lay the foundation for our work.

III. PROPOSED ALGORITHM

The algorithm is implemented in java. It uses a sliding

window model for processing the elements of the data stream.

In this model, the range of mining is confined to the elements

contained in a window which will slide with time. The

window always covers a certain number of most recent

elements and the mining task focuses on these elements at

any point.

The proposed algorithm is based on the Clustream

framework proposed by Agarwal et al. It is composed of an

online clustering component which is a single pass procedure

that reads the transactions of the data stream as it arrives and

forms the cluster snapshots. Unlike the Clustream framework

that handles numeric data and stores summary as sum of

squared errors the proposed algorithm uses transactional data

and stores cluster snapshots are in terms of histograms. A

histogram records the frequency of every distinct item in the

sliding window in the non decreasing order of frequencies.

An offline component is used to output the clusters formed

for a particular time period. The input parameters required by

the algorithm are, the sliding window size sw, the similarity

threshold , the frequency threshold φ, the memory

threshold Lm and the maximum amount of available memory

Memorymax. The similarity threshold is required to

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

487

determine the cluster into which the newly arriving

transaction is to be moved. The frequency threshold is

helpful in selecting a cluster representative. The memory

threshold depicts the minimum amount of memory to be

available at the given instance of time to ensure that

possibility of algorithm running out of memory resource

which may lead to the crash of the software due to non

availability of memory resources is avoided.

In order to partition a data stream into clusters a

quantitative measure to assess the degree of similarity

between the two transactions is required. There are several

similarity measures proposed for clustering transactional

databases [4], [17]-[19]. The similarity measure used in the

proposed algorithm is the one proposed by Li et al. [11]

S(Ti, Tj)=(ITi\TjI)/max(ITiI, ITjI) (1)

Based on our earlier work [20] we try to identify the

parameters in the algorithm that can be fine tuned in order to

avoid the algorithm running out of memory. Such parameters

are called as adaptation parameters. Among the input

parameters, sliding window size SW, similarity threshold

and frequency threshold φ are used as adaptation parameters.

Sliding window size is a parameter that is directly

proportional to the memory and the CPU resource. Because

greater the value for the sliding window size more will be the

number of transactions to be handled and higher will be the

memory and processing time. Obviously whenever resource

critical condition is detected during the course of execution

the sliding window size is to be varied according to the

following condition:

Rm=(Memorymax–Um)/Memorymax (2)

In (2), Rm denotes amount of remaining memory and Um

denotes the amount of memory being utilized up to this point

of time. When Rm - Lm <= 0, it depicts the memory critical

condition that calls for adjusting the sliding window size

according to the following equation:

 (3)

For example if initial window size is 10 and Rm=0.8 then

the new window size will be 10×0.8 = 8. The size of the

sliding window is changed only when Rm falls below Lm

indicating a memory critical condition.

The algorithm works in three phases. First is the

initialization phase that sets the initial window size according

to the user defined input and forms the clustering for the

initial sliding window. Next an adaptation phase is executed

before the window slides. In this phase the adaptation

parameters viz, sliding window size sw and the similarity

threshold are changed based on the current resource

usage. The resource accounted for is the memory utilized and

memory available at a particular time instance (2). If it falls

below minimum threshold value the input granularity is

adjusted by reducing the window size (3).

Finally there is an offline macro clustering phase that will

print the output result for the given query period. The detailed

algorithm is outlined below:

Input: Sliding window size SW, similarity threshold

and frequency threshold φ, Memorymax, Lm (Memory

available cannot be lesser than this)

// online micro clustering component

While not the end of the stream do

Begin

//Initialization phase

Read the first transaction

Form a cluster

Repeat

While not the end of the sliding window do //on line

micro clustering

Found=0 // indicates if the candidate cluster is found

Read the next transaction t

For each of the existing cluster Ci

Find the similarity St with respect to transaction t

If St >=

 Found=1

 insert t into Ci

Update the cluster representative and its histogram

break;

End If

 End For

If not found form a new cluster.

 End While

// Adaptation phase

Monitor the current memory usage

 Rm = (Memorymax – Um) / Memorymax

 If Rm < Lm then sw = Rm × sw

 //end adaptation phase

Till the stream arrives

The space requirement of the algorithm is small as the

algorithm represents the cluster with a histogram in the main

memory, the space consumed will be O(dk) where k is the

number of clusters and d is the dimension of the transaction.

Since the algorithm is non iterative the processing time will

be O(n) where n is the total number of transactions in the

cluster.

IV. EMPIRICAL ANALYSIS

The proposed algorithm uses the initial parameter settings

as. =60% and φ=40%. The first perspective for analyzing

the algorithm is to demonstrate how the processing is

continued by resource adaptation that is the adjustment of the

size of the input sliding window. The concept is

demonstrated by the graph given in Fig. 1. It is evident from

the graph that the algorithm terminates after executing for a

while without the resource adaptation. The resource

adaptation mechanism enables the continuation of execution

by suitable adjustment of the input granularity. The sliding

window size adjustment controls the number of input

transactions considered for processing.

Another crucial aspect of analyzing an online technique is

to measure the running time. The computational complexity

can be better illustrated considering various threshold values.

It is observed that the run time of the algorithm will take very

small leaps for a larger increase in the threshold value as

illustrated in the graph below (Fig. 2).

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

488

sw=Rm×sw

Time Vs Remaining memory

0

20

40

60

80

100

120

0 30 55 70 11
0

15
0

Time in seconds

R
e
m

a
in

in
g

 m
e
m

o
r
y
 i

n
 K

B

With Adaptation

Without Adaptation

Fig. 1. The impact of adaptation on memory usage.

Run time for different threshold values

0

20

40

60

80

100

20 30 40 50 60 70

Threshold Percentage

R
u

n
 t

im
e
 i
n

 s
e
c
o

n
d

s

Finally scalability tests are conducted by increasing the

number of transactions keeping the dimensionality of data set

constant. The empirical results generated are depicted by the

graph below (Fig. 3).

Scalability of the Algorithm

0

2

4

6

8

1 2 3 4 5

Number of transactions(*100k)

R
u

n
ti

m
e
 i
n

s
e
c
o

n
d

s
(*

1
0
0
0
)

Fig. 3. Scalability of the algorithm for varying number of transactions.

The above graph illustrates the scalability of the algorithm

as the number of transactions increased.

V. C FUTURE WORK

In this study we have proposed an efficient scalable

algorithm for clustering the transactional data streams in a

resource constrained environment. An important aspect of

the proposed algorithm is that it is structure seeking and it is

not a structure imposing algorithm. Further the algorithm

monitors the resource usage and always tries to keep the

processing going on with an acceptable compromise on

quality. The empirical evaluation demonstrates the efficiency

of the algorithm. The proposed algorithm can be extended to

cluster multiple data streams that originates from distributed

locations.

REFERENCES

[1] A. Charu, J. Han, J. Wang, and P. S. Yu, “A framework for clustering

evolving data streams,” in Proc. VLDB, Berlin, Germany, September

2003.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. “Models

and issues in data stream systems,” in Proc. ACM Symp, PODS, June

2002.

[3] D. Barbara, “Requirements for clustering data streams,” SIGKDD

Explorations, 2002.

[4] Y. Yang, X. Guan, and J. You, “CLOPE: a fast and effective clustering

algorithm for transactional data,” in Proc. SIGKDD, Edmonton,

Canada, July 2002.

[5] Z. Huang, “A fast clustering algorithm to cluster very large categorical

data sets in data mining,” in Proc. SIGMOD Workshop on Research

Issues in Data Mining and Knowledge Discovery, 1997.

[6] J. B. MacQueen, “Some methods for classification and analysis of

multivariate observations,” in Proc. 5-th Berkeley Symposium on

Mathematical Statistics and Probability, Berkeley, University of

[7] K. Wang, C. Xu, and B. Liu, “Clustering transactions using large

items,” in Proc. CIKM’99, Kansas, Missouri, 1999.

[8] S. Guha, R. Rastogi, and K. Shim, “ROCK: a robust clustering

algorithm for categorical attributes,” in Proc. ICDE'99, Sydney,

Australia, 1999.

[9] G. Venkatesh, G. Johannes, and R. Ramakrishnan, “CACTUS:

clustering categorical data using summaries,” in Proc. 5th

International Conference on Knowledge Discovery and Data Mining

(KDD), pp. 73–83, 1999.

[10] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efficient data

clustering method for very large databases,” in Proc. SIGMOD, Canada,

June 1996.

[11] Y. Li, and R. P. Gopalan, "Clustering high dimensional sparse

transactional data with constraints," in Proc. IEEE International

Conference on Granular Computing, pp. 692 – 695, 2009.

[12] J. Chang and W. Lee, “Finding recent frequent itemsets adaptively over

online data streams,” in Proc. ACM SIGKDD, pp. 487–492, 2003.

[13] C. Giannella , J. W. Han, J. Pei , X. F. Yan, and P. S. Yu. Mining

frequent patterns in data streams at multiple time granularities. [Online].

Available: www.cs.uiuc.edu/~hanj/pdf/fpstm03.pdf, 2003.

[14] C. Giannella, J. W. Han, J. Pei , X. F. Yan, P. S. Yu. Mining frequent

patterns in data streams at multiple time granularities. [Online].

Available: www.cs.uiuc.edu/~hanj/pdf/fpstm03.pdf, 2003.

[15] G. M. Medhat and P. S. Yu, “A holistic approach for resource-aware

adaptive data stream mining,” New Generation Computing, Ohmsha,

Ltd. and Springer-Verlag., 2006.

[16] W. Teng, M. Chen, and P. S. Yu, “Resource-aware mining with

variable granularities in data streams,” in Proc. SIAM SDM, 2004.

[17] L. O. Callaghan, A. Meyerson, R. Motwani, N. Mishra, and S. Guha.

“Streaming data algorithms for high quality clustering,” in Proc. ICDE,

San Jose, CA, February 2002.

[18] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan,

“Clustering data streams: theory and practice,” IEEE Transactions on

Knowledge and Data Engineering, vol. 15, no. 3, June 2003.

[19] J. Yang, “Dynamic clustering of evolving streams with a single pass,”

in Proc. 19th International Conference on Data Engineering,

ICDE’03.

[20] J. Chandrika and K. R. Ananda Kumar, “An adaptive framework for

clustering data streams,” in Proc. ACC 2011, Kochi, India, July 22-24,

2011.

J. Chandrika is a M.Tech graduate in computer science and engineering.

Currently works as associate professor in the department of computer science

and engineering at Malnad college of Engineering, Hassan, Karnataka.

Currently she is doing her research work in the area data stream mining under

visvesvaraya technological university, Belgaum. She has four international

conference publications and four international journal publications and one

national conference publication to her credit.

K. R. Ananda Kumar holds a doctoral degree in computer science and

engineering. Currently works as Professor and Head of the department in the

department of computer science and engineering, SJBIT Bangalore. He has a

vast teaching experience of about 25 years. His research interest includes

medical data mining; data stream mining, Artificial intelligence, intelligent

agents and web mining. He is currently guiding five research scholars.He has

fourteen international journal publications and two national journal to his

credit.

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

489

Fig. 2. The impact of threshold on execution time

California Press, vol. 1, pp. 281-297, 1967.

ONCLUSION AN D

