
 

Abstract—Data stream mining research has gained 

importance in the recent years due to the generation of vast 

amount of data streams by many applications. Transactional 

data streams are characterized by high dimensionality and high 

cardinality. The transactional data streams arrive at a very 

high speed in an unbounded form. Clustering is an important 

core data mining activity that provides valuable insights into 

the data being processed. Clustering Transactional stream is a 

highly challenging activity as it is bound to single pass 

constraint as well as memory and CPU constraints. In this 

context an efficient algorithm is proposed to cluster the 

transactional data streams. The proposed algorithm accounts 

for the resource constraints. Extensive experimental analysis of 

the proposed algorithm on the real and synthetic data 

demonstrates the scalability and efficiency of the algorithm. 

 

Index Terms—Cluster histogram, data streams, data stream 

clustering, resource adaptation, sliding window model. 

 

I. INTRODUCTION 

With the advances in data collection techniques and 

communication technology, many organizations receive vast 

amount of data at very high rates. Some of the examples that 

can be given in this context are – sensor networks, network 

traffic control and web usage monitoring. In all these 

examples there is high rate of data accumulation coupled 

with constant changes in the characteristics of data. Such type 

of data is called data streams. More formally, a data stream is 

an ordered sequence of data records that can be read only 

once or a small number of times. Retail chain transactions, 

web logs, credit card transaction flows and real time stock 

exchange data are some of the examples of data streams in 

real life scenario. The characteristics of data stream includes 

[1], [2]: huge volume of continuous data, possibly infinite, 

fast changing and requiring real time response, sequential 

single pass constraint, multi-level and multidimensional 

processing. Due to the unique characteristics of the data 

stream traditional algorithms have to be modified to handle 

the data streams. 

A challenging problem in the area of data stream mining is 

to cluster the data stream [3]. Clustering can be considered 

the most important unsupervised learning problem; so, as 

every other problem of this kind, it deals with finding a 

structure in a collection of unlabeled data. Clustering refers 

to the process of grouping a collection of objects into classes 

or “clusters” such that objects within the same class are 
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similar in a certain sense, and objects from different classes 

are dissimilar. Transactional data is a kind of special 

categorical data, and typical examples are market basket data, 

web usage data, customer profiles, patient symptoms records, 

and image features. Transactional data are generated by many 

applications from areas, such as retail industry, ecommerce, 

healthcare, Customer Relationship management and so forth. 

The volume of transactional data is usually large. Therefore, 

there are great demands for fast and yet high-quality 

algorithms for clustering transactional datasets. Fast and 

accurate clustering of transactional data has many potential 

applications in retail industry, e-commerce intelligence, etc. 

In the data stream settings the set of transactional data to be 

analyzed is application dependent. It can be the whole data 

stream or a part of it depending on the purpose of clustering. 

To gain a better understanding about this transactional data 

streams are clustered. Recently, more attention has been put 

on clustering categorical data [4], where records are made up 

of non-numerical attributes. When clustering transactional 

data streams it is very much important to account for the 

available resources like memory and CPU time. 

The recent work in the area of clustering data streams 

focus only on clustering numerical data values. Even though 

a few algorithms are developed for clustering categorical data 

stream none of them make an effort to cluster transactional 

data stream in a resource efficient manner. As such an effort 

has been made to develop a novel algorithm that clusters the 

transactional data stream in a resource adaptive way. 

Given a transactional data stream , the problem is to 

partition it into a number of clusters so that same type of 

transactions are in the same cluster, in other words intra 

cluster similarity is maximized and inter cluster similarity is 

minimized. This task is to be done in a resource adaptive 

manner. That is during the course of execution of the 

algorithm, if at any instance the algorithm runs out of 

memory space then the algorithm tries to continue its 

execution with a little compromise on the quality of output 

cluster. The mathematical formulation of the same can be 

given as 
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where S is the similarity measure, k denotes the number of 

clusters, n denotes the number of records in a given cluster, 

Tij denotes jth transaction in cluster i, rep (ck) represents the 

representative of cluster under consideration.

The rest of the paper is organized as follows Section II

reviews the related work carried out in the context of 

clustering categorical streams. Section III explains the novel 

algorithm proposed. Section IV gives the details of 

experimental evaluation. Finally Section V concludes the 



paper with directions for the possible future work. 

 

II. RELATED WORK 

The main challenge in clustering the data streams is to 

handle the evolving data. Aggarwal et al. [1] has proposed a 

framework for clustering the evolving streams. It splits the 

process of clustering into an online micro clustering 

component subjected to single pass constraint and an offline 

macro clustering component which is not constrained. The 

Clustream algorithm which is based on this framework deals 

with d dimensional numeric data. The summary information 

is stored as the sum of squared data values and sum of data 

values for each dimension together with sum of squares of 

timestamps and sum of timestamps for the data points in the 

cluster. This approach for storing summary information is 

suitable for handling numeric data and not categorical data. 

In the recent past a few algorithms are developed for 

handling categorical data. The Kmode algorithm [5] is the 

extension of Kmeans [6] which can handle only numerical 

data streams. The cluster is represented by a vector that has 

minimal distance to all the points. The distance is measured 

by number of common attributes shared by two data values, 

considering optimal weights for different attribute values. 

Since this algorithm requires the user to specify the number 

of clusters as input it produces K clusters regardless of 

underlying cluster structure. Wang et al. have proposed 

Largeitem [7] .It works in two phases: Allocation phase and 

refinement phase. In the allocation phase every transaction 

read will be moved to an existing cluster or a new cluster will 

be created whichever minimizes the cost. In refinement phase 

the original allocation made will be changed based on re 

computation of cost function. Because of two passes it is not 

suitable for data streams. ROCK [8] is based on the 

assumption that an attribute value, in addition to its 

occurrence, should be examined according to the number of  

other attribute values it exists with. ROCK works totally 

differently than k-modes not only because it is hierarchical 

but also due to the fact that it works on samples of the data. 

The main disadvantage of ROCK is that it employs sampling 

for scaling up to larger datasets and the results of clustering 

highly depend on it. CACTUS [9], an approach that entails 

the computation of summaries from the underlying data set (a 

concept similar to the one used in BIRCH [10]. CACTUS’s 

summaries have to do with the support of pairs of attribute 

values from different attributes and the similarity of values 

that belong to the same attribute. The disadvantage of this 

algorithm is that, as the number of dimensions grows, when 

computing the summaries, each attribute value of a tuple is 

compared with every other value while the results can be kept 

in main memory only if the domain size of every attribute is 

very small. CLOPE [4] uses histogram as the summary 

structure for representing the cluster. The cost function used 

for clustering tries to minimize the height to width ratio of the 

histogram because a larger height implies more overlapping 

items and hence more intra cluster similarity. CLOPE is a 

cluster seeking algorithm that produces clusters based on user 

expectation of intra cluster similarity controlled by a user 

input called repulsion factor. Choosing a proper value for the 

repulsion factor is a challenging task. CLOPE requires 

multiple scans of the data, where the number of iteration 

depends on the desired level of intra-cluster similarity. This 

violates the one-pass requirement. Furthermore, CLOPE 

requires multiple evaluation of the clustering criterion for 

each record, an expensive operation when the size of the 

stream is massive. INCLUS [11] is an algorithm that clusters 

transactional data streams using two variants of sliding 

window model one is equal width model and the other is 

elastic model. This algorithm uses the similarity measure as 

given by equation (4) of section 2. Most of these algorithms 

try to produce the clusters taking into account the available 

computational requirements like memory and CPU time and 

the required resources as such the scalability of these 

algorithms is questionable. However some of the recent 

works focus on resource adaptation and quality assurance. 

Two such algorithms are proposed for finding frequent 

itemsets in data streams [12], [13]. RVFKM [14] is a resource 

aware very fast Kmeans algorithm that is applicable to 

numeric data streams in ubiquitous environment using the 

algorithm output granularity approach that is the algorithm 

controls the amount of output generated so that it can be 

handled with available resources. The concept of resource 

awareness is incorporated for processing the data streams 

generated by wireless sensor network by designing a 

resource aware framework for sun SPOT sensor node [15]. 

An online adaptive clustering algorithm called ERA Cluster 

is developed in Java. It is an online clustering algorithm 

which uses a threshold value to reduce the data generated by 

the sensor node so that it can be processed offline later. The 

algorithm is capable of adapting itself to the change in the 

battery level, remaining memory and CPU utilization. The 

algorithm uses Manhattan distance rather than the normally 

used Euclidian distance. Input adaptation using load 

shedding and data synopsis creation using wavelets have 

been proposed in [16], The Ideas proposed by these resource 

adaptive algorithms lay the foundation for our work. 

 

III. PROPOSED ALGORITHM 

The algorithm is implemented in java. It uses a sliding 

window model for processing the elements of the data stream. 

In this model, the range of mining is confined to the elements 

contained in a window which will slide with time. The 

window always covers a certain number of most recent 

elements and the mining task focuses on these elements at 

any point. 

The proposed algorithm is based on the Clustream 

framework proposed by Agarwal et al. It is composed of an 

online clustering component which is a single pass procedure 

that reads the transactions of the data stream as it arrives and 

forms the cluster snapshots. Unlike the Clustream framework 

that handles numeric data and stores summary as sum of 

squared errors the proposed algorithm uses transactional data 

and stores cluster snapshots are in terms of histograms. A 

histogram records the frequency of every distinct item in the 

sliding window in the non decreasing order of frequencies.  

An offline component is used to output the clusters formed 

for a particular time period. The input parameters required by 

the algorithm are, the sliding window size sw, the similarity 

threshold  , the frequency threshold φ, the memory 

threshold Lm and the maximum amount of available memory 

Memorymax. The similarity threshold is required to 
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determine the cluster into which the newly arriving 

transaction is to be moved. The frequency threshold is 

helpful in selecting a cluster representative. The memory 

threshold depicts the minimum amount of memory to be 

available at the given instance of time to ensure that 

possibility of algorithm running out of memory resource 

which may lead to the crash of the software due to non 

availability of memory resources is avoided.  

In order to partition a data stream into clusters a 

quantitative measure to assess the degree of similarity 

between the two transactions is required. There are several 

similarity measures proposed for clustering transactional 

databases [4], [17]-[19]. The similarity measure used in the 

proposed algorithm is the one proposed by Li et al. [11] 

 

S(Ti, Tj)=(ITi\TjI)/max(ITiI, ITjI)                  (1) 

 

Based on our earlier work [20] we try to identify the 

parameters in the algorithm that can be fine tuned in order to 

avoid the algorithm running out of memory. Such parameters 

are called as adaptation parameters. Among the input 

parameters, sliding window size SW,  similarity threshold 

and frequency threshold φ are used as adaptation parameters. 

Sliding window size is a parameter that is directly 

proportional to the memory and the CPU resource. Because  

greater the value for the sliding window size more will be the 

number of transactions to be handled and higher will be the 

memory and processing time. Obviously whenever resource 

critical condition is detected during the course of execution 

the sliding window size is to be varied according to the 

following condition: 

 

Rm=(Memorymax–Um)/Memorymax               (2) 

  

In (2), Rm denotes amount of remaining memory and Um 

denotes the amount of memory being utilized up to this point 

of time. When Rm - Lm <= 0, it depicts the memory critical 

condition that calls for adjusting the sliding window size 

according to the following equation: 

 

                                  (3) 

 

For example if initial window size is 10 and Rm=0.8 then 

the new window size will be 10×0.8 = 8. The size of the 

sliding window is changed only when Rm falls below Lm 

indicating a memory critical condition. 

The algorithm works in three phases. First is the 

initialization phase that sets the initial window size according 

to the user defined input and forms the clustering for the 

initial sliding window. Next an adaptation phase is executed 

before the window slides. In this phase the adaptation 

parameters viz, sliding window size sw and the similarity 

threshold   are changed based on the current resource 

usage. The resource accounted for is the memory utilized and 

memory available at a particular time instance (2). If it falls 

below minimum threshold value the input granularity is 

adjusted by reducing the window size (3). 

Finally there is an offline macro clustering phase that will 

print the output result for the given query period. The detailed 

algorithm is outlined below: 

Input: Sliding window size SW,  similarity threshold 

and frequency threshold φ, Memorymax, Lm (Memory 

available cannot be lesser than this) 

// online micro clustering component 

While not the end of the stream do 

Begin 

//Initialization phase 

Read the first transaction 

Form a cluster  

Repeat 

While not the end of the sliding window do    //on line 

micro clustering 

Found=0 // indicates if the candidate cluster is found 

Read the next transaction t 

For each of the existing cluster Ci 

Find the similarity St with respect to transaction t 

If St >=    

 Found=1 

 insert t into Ci  

Update the cluster representative and its histogram 

break; 

End If 

  End For 

If not found form a new cluster. 

               End While  

// Adaptation phase 

Monitor the current memory usage 

      Rm = (Memorymax – Um) / Memorymax 

         If Rm < Lm then sw = Rm × sw 

           //end adaptation phase 

Till the stream arrives 

The space requirement of the algorithm is small as the 

algorithm represents the cluster with a histogram in the main 

memory, the space consumed will be O(dk) where k is the 

number of clusters and d is the dimension of the transaction. 

Since the algorithm is non iterative the processing time will 

be O(n) where n is the total number of transactions in the 

cluster. 

 

IV. EMPIRICAL ANALYSIS 

The proposed algorithm uses the initial parameter settings 

as.  =60% and φ=40%. The first perspective for analyzing 

the algorithm is to demonstrate how the processing is 

continued by resource adaptation that is the adjustment of the 

size of the input sliding window. The concept is 

demonstrated by the graph given in Fig. 1. It is evident from 

the graph that the algorithm terminates after executing for a 

while without the resource adaptation. The resource 

adaptation mechanism enables the continuation of execution 

by suitable adjustment of the input granularity. The sliding 

window size adjustment controls the number of input 

transactions considered for processing. 

Another crucial aspect of analyzing an online technique is 

to measure the running time. The computational complexity 

can be better illustrated considering various threshold values. 

It is observed that the run time of the algorithm will take very 

small leaps for a larger increase in the threshold value as 

illustrated in the graph below (Fig. 2). 
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sw=Rm×sw
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Fig. 1. The impact of adaptation on memory usage. 
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Finally scalability tests are conducted by increasing the 

number of transactions keeping the dimensionality of data set 

constant. The empirical results generated are depicted by the 

graph below (Fig. 3). 
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Fig. 3. Scalability of the algorithm for varying number of transactions. 

 

The above graph illustrates the scalability of the algorithm 

as the number of transactions increased. 

 

V. C FUTURE WORK 

In this study we have proposed an efficient scalable 

algorithm for clustering the transactional data streams in a 

resource constrained environment. An important aspect of 

the proposed algorithm is that it is structure seeking and it is 

not a structure imposing algorithm. Further the algorithm 

monitors the resource usage and always tries to keep the 

processing going on with an acceptable compromise on 

quality. The empirical evaluation demonstrates the efficiency 

of the algorithm. The proposed algorithm can be extended to 

cluster multiple data streams that originates from distributed 

locations. 
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Fig. 2. The impact of threshold on execution time
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