



Abstract—The success of any Intrusion Detection System lies

in its ability to quickly adapt to new threats in near real time

and further prevent new attacks. This implies extremely

efficient machine learning algorithms in the backend, which in

turn may use clustering algorithms capable of distinguishing

between normal and anomalous network traffic. This work is a

first step towards proposing such an IDS, which is built on

clustering-based machine learning. The authors evaluate

different clustering algorithms using a network packet trace

and provide results, which help in evaluating these algorithms.

The work-in-progress section of the paper visualizes the IDS

which can be used in an environment where the traffic volumes

are very high, enterprise boundaries are blurred, and the

likelihood of malicious attacks is extremely high.

Index Terms—Clustering, intrusion detection system,

security.

I. INTRODUCTION

With the advent of cloud computing and increasingly

networked enterprise networks, data sources and sinks have

become blurred to the extent that it is almost next to

impossible to isolate end points. Hence, it adds to the

difficulty of detecting the source of the attack. This is further

complicated by the fact that network and cloud

infrastructures are shared by disparate organizations and

enterprises. This makes it extremely hard for the network and

security administrators to analyze the data flow in cases of

security attacks. Moreover, the volume of data coming in and

going out of a large public cloud is in the order of Petabytes.

For example, it is estimated that Amazon EC2 accounts for

1% of all the traffic on the internet [1].

Developing attack prevention and control systems which

can handle the volume, velocity, and variety of such data is an

interesting challenge. Additionally, with new types of attacks

appearing, developing flexible and adaptive security oriented

approaches is also a severe challenge. Traditional approaches

may not suffice to tackle the attacks prevailing today.

Commercial computer networks administrators rely on

special software and hardware systems called Intrusion

Detection Systems (IDS). Typically, an IDS monitors traffic

on the network and looks for any threats. The goal of an

Intrusion Detection System is to automatically scan network

activity, differentiate it into „attack‟ and „no attack‟, and

detect intrusions. Once the attack is detected, the system is

expected to alert the administrators so that corrective and

preventive actions can be taken.

Historically, signature based IDS‟s such as SNORT [2] has

Manuscript received June 10, 2013; revised August 15, 2013.

The authors are with the PESIT, Bangalore (e-mail:

dinkar.sitaram@gmail.com).

been widely used. Such a system monitors packets on the

network and compares them against a database of signatures

or attributes from known malicious attacks. However,

generating the signature of a new attack involves significant

processing time and till the new signature is generated and is

put to use, the IDS is rendered useless against isolating and

protecting from the new threat. Anomaly based IDS‟s offer

some help in this problem. In network traffic terms, an

Anomaly-based IDS captures all the headers of the IP packets

entering the network. It then filters out all known and legal

traffic, including web traffic to the organization's web server,

mail traffic to and from its mail server, outgoing web traffic

from company employees and DNS traffic to and from its

DNS server. Such systems monitor network traffic and

compare it against an established baseline. The baseline

identifies a “normality” criteria for that network in terms of

bandwidth, protocols, ports, and devices specific to that

network. Network and security administrators are alerted in

the event when traffic is detected which is anomalous, or

significantly different, than the baseline.

In this context, anomaly-based network intrusion detection

techniques offer valuable technology to protect target

computer systems and networks against malicious activities

[3]. However, despite the variety of such methods described

in the literature in recent years [4], security tools

incorporating anomaly detection functionalities are just

starting to appear, and several important problems remain to

be solved. For example, anomaly based IDS requires

additional hardware spread across the network than is

required with other types of IDS‟s. Especially larger

networks with high bandwidth connections require more

hardware and it is therefore necessary to install the anomaly

sensors closer to the servers and network that are being

monitored. The rationale here is that the amount of data

transferred is reduced if the sensors are closer to the

application, than if they were located close toor at the

network backbone [5].

Data mining methods can help an Intrusion Detection and

Prevention system to enhance its performance in various

ways such as analysis of stream data, visualization and

querying tools, distributed data mining, association,

correlation, and discriminative pattern analysis etc.

Clustering algorithms form an important subset of data

mining algorithms. These algorithms can analyse network

activity and classify it as „normal‟ or „anomalous‟. Clustering

has been widely referred to as unsupervised learning, which

finds „natural‟ grouping of instances given a set of data. It

partitions a given set of data objects into meaningful

sub-classes called clusters, such that objects belonging to a

cluster are similar to one another, yet dissimilar to objects

belonging to other clusters.

Intrusion Detection System for High Volume and High

Velocity Packet Streams: A Clustering Approach

Dinkar Sitaram, Manish Sharma, Mariyah Zain, Ankita Sastry, and Rishika Todi

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

480DOI: 10.7763/IJIMT.2013.V4.446

In this work, we make a first attempt towards proposing a

clustering based IDS which takes a high volume and velocity

network traffic as input (a typical characteristic of a Big Data

stream), and employs efficient clustering techniques to train

an IDS in a relatively short time using a sub set of the stream.

The trained system further detects anomalous behavior based

on its learning in the first phase.

The rest of the paper is structured as follows. Section II

outlines some of the relevant work done in the area of

learning based IDS‟s. Section III describes our methodology,

datasets, and briefly surveys the various clustering

algorithms. Section IV presents our experimental results

followed by a succinct analysis in Section V. Section VI is

one of the key sections of our work where we provide a sneak

preview into our work-in-progress. Finally, Section VII

presents a summary of our work and some concluding

remarks.

II. RELATED WORKS

A system for intrusion detection based on language models

was proposed in [6]. It proposed intrusion detection by

extracting language features like n-grams and words from

connection payloads, followed by applying unsupervised

anomaly detection, i.e. applying clustering algorithms to the

extracted data without prior learning phase or the presence of

labelled data. One of the key aspects of this work is

linear-time computation of similarity measures between

language models of connection payloads.

A framework for automatic analysis of malware behaviour

using Machine Learning, as proposed in [7], allows

automatic identification of novel classes of malware with

similar behaviour (clustering) and assigning unknown

malware to these discovered classes (classification). Hence

the model is capable of processing the behaviour of numerous

malware binaries on a daily basis. The incremental analysis

significantly reduces the run-time overhead of current

analysis methods, while providing accurate discovery and

discrimination of novel malware variants.

Intrusion detection can be done in two ways as discussed in

[8]: supervised learning and unsupervised learning. Both

types of learning were deployed in anomaly detection

(unusual activity) and misuse detection (recognize known

attack patterns which are signature based). By applying

supervised learning for anomaly detection, the resulting

algorithms were found to have low efficiency with an

exception of SVM and k-nearest neighbors algorithm which

proved to have a slightly better efficiency. For misuse

detection, the best algorithms found by supervised learning

were C4.5 and MLP algorithm. While not one specific

algorithm was a winner in the unsupervised learning

methodology for both anomaly and misuse detection,

Gamma algorithm worked exceptionally well for unknown

attacks.

Self learning systems to detect anomalous SIP messages,

described in [9]. A self-learning system for anomalous SIP

messages is proposed by embedding SIP messages and

determining a deviation from a model of normality. The

developed model has self-learning capabilities: can

automatically retain itself to adapt to moderate changes in

network environment and traffic. This was tested on VOIP

applications and attacks like Zero Day attacks and worms.

The model performed feature extraction: each message was

mapped to a feature vector; anomaly detection: feature

vectors corresponding to SIP messages are compared against

a model of normality; initialization and training: on initial

deployment of the system as well as on a periodic basis the

learning model is updated using traffic labelled as normal. To

prevent external manipulation of the learning process,

randomization, sanitization and verification of the model was

performed.

Almost all the previous attempts that we have surveyed

focus on supervised or unsupervised anomaly detection based

on set rules. There is no notion of a prior machine learning

phase or labeled data that could be used to train the IDS.

Moreover, none of the systems are well suited for anomaly

detection in a cloud environment where high volume and

high velocity traffic is involved. While our approach uses the

fundamentals described in the previous attempts, we focus on

detecting anomalies through an efficient clustering algorithm

using labeled data which can be further used to train a

machine learning system.

III. METHODOLOGY AND ALGORITHMS

This section describes our approach to demonstrate the

effectiveness of clustering algorithms to classify good

packets from bad packets. We begin by describing the dataset

used for simulating our experiments, and then briefly survey

three different clustering algorithms used in our approach,

and finally describe the methodology to deploy the clustering

algorithms to cluster the sample dataset.

A. Dataset Description

We used the KDD Cup 1999 dataset which consists of

42-tuple instances where each instance represents a raw

TCP/IP packet and each attribute/value in an instance is

extracted from the respective packet [10]. A few of the

attributes present in the dataset are src_bytes, dest_bytes,

wrong_fragment, dst_host_count, protocol, service, .

The dataset contains multiple instances and was formed in a

simulated military environment. It comprises of 24-types of

intrusion attacks which can be categorized under 4 different

categories of attacks, viz., Denial of Service- DOS (e.g.

Smurf), Remote to Local-R2L (e.g. Password guessing), User

to Root-U2R (e.g. Buffer overflow attack), and Probing (e.g.

Port scanning).

B. Normalization

where, μ is the mean value and σ is the standard deviation of

attribute x [11]. Normalization prevents attributes with

numerically large values from dominating the clustering.

C. Metric

Determining the appropriate metric is an essential aspect

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

481

x
z








We applied z-score normalization (or zero-mean

normalization), where the values for an attribute x, are

normalized based on the mean and standard deviation of x. A

value v, of x is normalized to z by computing.

et al

of any clustering algorithm. For the given problem, we chose

the Standard Euclidean Distance [11], since most of the data

are continuous numeric values.

D. Clustering

While one aspect of our work is to conceptualize packet

classification based on prior machine learning in an

environment where the packets arrive in continuous big data

like streams, we also want to evaluate various clustering

algorithms which are keys to our proposed machine learning

techniques. We evaluated the following 3 well-known

clustering methods:

Partitioning methods: This method constructs k partitions

of the data, where each partition represents a cluster and k<n.

The data is divided into k groups, such that each group must

contain at least one object. The general criterion of a „good‟

partitioning is that objects in the same cluster are „close‟ to

one another, whereas objects belonging to different clusters

are „far apart‟.

Density-based methods: This method has been developed

based on the notion of density. The general idea is to continue

to grow a given cluster as long as the density in the

neighborhood exceeds some threshold.

Model-based methods: This method attempts to optimize

the fit between the given data and some mathematical model.

They are often based on the assumption that the data are

generated by a mixture of underlying probability

distributions.

K-Means Clustering, a variant of partitioning methods is a

centroid based clustering technique. It is one of the simplest

unsupervised learning algorithms that solve the well known

clustering problem [11]. The procedure follows a simple and

easy way to classify a given data set through a certain number

of clusters (assume k clusters) fixed a priori. The main idea is

to define k centroids, one for each cluster. These centroids

should be placed in a smart way because different location

generates different result. So, the better choice is to place

them as much as possible far away from each other. The next

step is to take each point belonging to a given data set and

associate it to the nearest centroid. When no point is pending,

the first step is completed and an early grouping is done. At

this point we need to re-calculate k new centroids as centers

of the clusters resulting from the previous step. After we have

these k new centroids, a new binding has to be done between

the same data set points and the nearest new centroid thereby

generating a loop. As a result of this loop we may notice that

the k centroids change their location step by step until no

more changes are done. In other words centroids do not move

any more. Finally, this algorithm aims at minimizing an

objective function, in this case a squared error function

defined as:

where E is the sum of the squared error, for all objects in the

data-set; p is the point in space representing a given object; Ci

is the centroid of the cluster, Ci.

To obtain good results in practice, it is common to run the

k-means algorithm multiple times with different initial cluster

centres. The time complexity of k-means algorithm is O (nkt),

method is relatively scalable and efficient in processing large

data-sets.

DBSCAN algorithm, a variant of density-based clustering,

works on connected regions with high density [11]. It is done

by observing the neighborhood of an object, connecting the

objects that have dense neighborhoods to form dense regions

as clusters [12]. This algorithm is resistant to noise and can

handle clusters of various shapes and sizes. As the DBSCAN

algorithm performs clustering based on the density of a point

in the object, it has some prerequisites. Before the formation

of the clusters actually start, we need to provide two

parameters as input along with the object. The parameters are

epsilon (eps) and minimum points (min_pts). Epsilon

determines the boundary limit for the neighborhood points

for the point in consideration, et al. points that are at a lesser

distance than eps from the point in consideration, are

considered as it‟s set of neighborhood points, that can help it

getting added to a cluster provided the set has sufficient

number of points . The min_pts specify the minimum

threshold for the set of neighborhood points such that the

point currently being considered, can become a candidate of a

cluster. Density-reachable, core points, border points are a

few concepts related to this algorithm. A point p is

density-reachable from a point q with respect to eps, min_pts

if there is a chain of points p1, …, pn, p1 = q, pn = p such that

pi+1 is directly density-reachable from pi. An object with at

least min_pts objects within a radius „eps-neighborhood‟ is a

core object. An object that lies on the border of a cluster is a

border object [11].

The algorithm is as follows:

1) Arbitrarily select a point (data object) p.

2) Retrieve all points which are density reachable from

p wrt eps and min_pts.

3) If p is a core point, a cluster is formed.

4) If p is a border point, no points are density-reachable

from o and DBSCAN visits the next point of the

database.

5) Repeat steps 2 through 4, until all the instances from

the data set have been processed.

If a spatial index is used, the computational complexity of

DBSCAN is O (nlogn), where n is the number of database

objects. Otherwise, the complexity is O (n2).

Expectation-Maximization algorithm, a variant of

model-based clustering, is an iterative refinement algorithm

that can be used to find the parameter estimates. EM assigns

each object to a cluster according to a weight representing the

probability of membership. Hence, new means are computed

based on weighted measures. EM starts with an initial

estimate or “guess” of the parameters of the mixture model. It

iteratively rescores the objects against the mixture density

produced by the parameter vector. The rescored objects are

then used to update the parameter estimates. Each object is

assigned a probability that it would possess a certain set of

attribute values given that it was a member of a given cluster

[11]. The algorithm is as follows:

Make an initial guess of the parameter vector: This

involves randomly selecting k objects to represent the cluster

means or centres, as well as making guesses for the additional

parameters.

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

482

where n is the total number of objects, k is the number of

clusters and t is the number of iterations. Therefore the

2

1

(,)
k

i
p Ci i

E dist p c


 

Iteratively refine the parameters (or clusters) based on the

following two steps:

1) Expectation step

2) Maximization step

Use the probability estimates from above to re-estimate (or

refine) the model parameters. For example,

This step is the “maximization” of the likelihood of the

distributions given the data.

The E-step takes O (m k d) operations. Similarly, the

M-step takes O (m k d). The EM algorithm is terminated

before a constant number of iterations are used up. The

computational complexity of EM algorithm is O (m k d).

Where m is the number of sub-clusters, k is the number of

clusters, d is the dimension of data items.

E. Methodology

We used the KDD Cup 1999 dataset, described earlier, for

conducting our experiments. Only 10% of the dataset was

used which consisted of 6170 instances spanning over a

9-week period. Each instance consists of “label” attribute

which is an indication whether the packet is malicious and

also lists the type of attack. We used a popular machine

learning software WEKA [13] to simulate a scenario where

packets are inspected as they flow through an Intrusion

Detection System and are further clustered as good or bad

packets. WEKA is capable of simulating all three clustering

algorithms described above over an arbitrary dataset such as

the KDD Cup dataset. We evaluated the 3 clustering

techniques mentioned earlier with the same dataset. The next

section outlines our results and evaluation.

IV. EVALUATION AND RESULTS

We first analyzed the dataset and observed the number of

normal versus anomalous instances, which in turn indicated

packet distribution in the dataset.

TABLE I: PACKET DISTRIBUTION IN THE DATASET

Normal 4498

Anomalous 1672

Total 6170

We evaluated the clustering algoithms using the same

dataset and observed the following:

A. K-Means Clustering Algorithm

After setting the number of clusters as 2 and the maximum

number of iterations as 500, as in Fig. 1 (where x-axis

indicates the packet type and y-axis indicates the number of

packets) we see that the number of normal packets is 4252

and the number of anomalous packets is 1918. This is very

close to the actual number of 4498 and 1672 respectively. No

un-clustered packets were found and the time taken to

execute the algorithm was 0.575 seconds.

Fig. 1. Actual packets versus detected packets using K-means algorithm.

B.

Fig. 2. Actual packets versus detected packets using EM algorithm.

We set the number of clusters as 2 and executed the

algorithm for our dataset. As in Fig. 2 (where x-axis indicates

the packet type and y-axis indicates the number of packets)

we found that out of the 6170 instances, 4766 were detected

as normal, and 1404 packets were detected as anomalous.

There were no un-clustered packets. The time taken to

execute the algorithm was 5.26 seconds.

C. DBSCAN Clustering Algorithm

Fig. 3. Actual packets versus detected packets using DBSCAN algorithm.

The values for the parameters required for DBSCAN were

taken as follows:

eps- 1.0 min_pts - 800.

The results as in Fig. 3 (where x-axis indicates the packet

type and y-axis indicates the number of packets) show that

out of 6170 instances, 2608 were detected as normal packets

and 962 were detected as anomalous packets. The rest of the

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

483

Assign each object xi to cluster Ck with the probability

where p(xijCk) = N(mk, Ek(xi)) follows the Gaussian

distribution around mean, mk, with expectation, Ek.

benign and malign packets respectively. Table I shows the

Expectation-Maximization Algorithm

() ()
) ()

()
|

i k k

p C p x C
ik kP x C p C x

i p x
i

  （

1

()1

()

n
i i k

i j i j

m
k

x P x C

P x Cn 







packets could not be identified as they were not clustered into

any of the two groups. Execution time for the algorithm was

46.6 seconds.

V. ANALYSIS

Our initial experimental results indicate that 2 out of the 3

clustering algorithms produce high fidelity results when

compared to the actual packet distribution in the sample

dataset. Specifically, the K-Means clustering algorithm

produced the highest accuracy results amongst the three and

was significantly more efficient than the EM and DBSCAN

techniques. In fact, its execution time was one order of

magnitude faster than the EM algorithm and two orders of

magnitude faster than the DBSCAN algorithm. We also

evaluated the scalability and efficiency of the K-Means

algorithm with a large dataset of about 500K instances. The

algorithm was able to complete the clustering in about

600-700 seconds while maintaining the same level of

accuracy.

VI. FUTURE WORK

The purpose of any Intrusion Detection System (IDS) is to

be able to detect network attacks in real time (or near real

time), isolate the attack, and recover from it. Such a system

needs the ability to analyze packets arriving in a network or

cloud via fat pipes (OC-192 and OC-768 links) and such data

is a clear representation of big data streams in its most raw

form (which is hundreds of thousands of TCP/IP packets per

second). We envision creating such an IDS where incoming

packets are captured, inspected, and analyzed using

state-of-the-art Big Data analytics technologies like Hadoop

and machine learning algorithms using open source

technologies like Mahout.

We are working on one such manifestation of the

envisioned IDS using a networking monitoring tool,

PacketPig [14], Apache Hadoop [15], and Mahout [16].

PacketPig is a Network Security Monitoring (NSM) Toolset

where „Big Data‟ is full packet captures. It snoops in on the

incoming network packets, through its integration with Snort,

p0f and custom java loaders; PacketPig does deep packet

inspection (DPI), file extraction, feature extraction, operating

system detection, and other deep network analysis. Full

packet capture is possible using Apache Hadoop. A standard

100Mbps internet connection can be cheaply logged for

months with a 3TB disk. Apache Hadoop is optimized around

cheap storage and data locality: putting spindles next to

processor cores.

Mahout is used for machine learning in our model and

would work on the following lines assuming a network flow

(conversation) is defined as 5 tuple defined by source IP,

destination IP, source port, destination port, and protocol

number:

1) Extract all conversations as 4 tuples or 5 tuples (with

protocol number) and extract features out of each

conversation to create a vector space.

2) Extract all attacks and join the two data sets so that we

now know what conversations are 'attacks' and what are

„not attacks'.

3) Train a model based on this information.

4) Test new traffic or perform cross validation to test the

accuracy of your model.

Fig. 4. Schematic of proposed future work.

A schematic of our future work is depicted in Fig. 4.

PacketPig takes pcap files as its input and processes them

to extract packet information. This packet information, is

given as input to Mahout which deploys the selected

clustering algorithm to generate clusters of “good” vs. “bad”

packets. We use machine learning techniques in this phase.

PacketPig helps in labeling data which in turn is used by

machine learning algorithms to train on and test new traffic.

VII. CONCLUSION

The demonstrated the effectiveness of clustering

algorithms with reference to clustering normal versus

anomalous network packets. We concluded that K-Means

clustering algorithm provides the highest level of accuracy

with minimum time complexity. Our work is a first step in the

direction of building an Intrusion Detection System which is

based on the premise that network packets arriving in a public

cloud can be treated as big data streams. State-of-the-art data

capture and inspection techniques combined with big data

processing technologies like Hadoop and through effective

use of clustering algorithms deployed in the machine learning

phase, a new IDS can be created. Such an IDS will be best

suited in a cloud environment which is a sink for heavy

network traffic and where network intrusion can be

detrimental to the service providers and consumers of the

cloud services.

REFERENCES

[1] How big is Amazon‟s cloud? [Online]. Available:

http://www.deepfield.net/2012/04/how-big-is-amazons-cloud.

[2] Snort: a lightweight network intrusion detection system for windows

and unix. [Online]. Available: http://www.snort.org/.

[3] E. Bloedorn, A. Christiansen, W. Hill, C. Skorupa, L. Talbot, and J.

Tivel, Data Mining for Network Intrusion Detection: How to Get

Started, 2001.

[4] F. Gong, “Deciphering detection techniques: part 2 - anomaly-based

intrusion detection,” March 2003.

[5] Signature-based or anomaly-based intrusion detection- practise and

pitfalls. [Online]. Available:

http://www.scmagazine.com/signature-based-or-anomaly-based-intrus

ion-detection-the-practice-and-pitfalls/article/30471/.

[6] K. Rieck and P. Laskov, “Language models for detection of unknown

attacks in network traffic,” Journal in Virology Manuscript, 2006.

[7]

[8]

[9]

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

484

K. Rieck, P. Trinius, C. Williems, and T. Holz, “Automatic analysis of

malware behavior using machine learning,” Journal of Computer

Security, IOS Press, June 2011.

P. Laskov, P. Dussel, C. Schafer, and K. Rieck, “learning intrusion

detection: supervised or unsupervised,” in Proc. International

Conference on Image Analysis and Processing (ICIAP), 2005.

K. Rieck, S. Wahl, P. Laskov, P. Domschitz, and K. R. Muller, “A

self-learning system for detection of anomalous sip messages,”

http://www.snort.org/
http://lcamtuf.coredump.cx/p0f3/
http://www.deepfield.net/2012/04/how-big-is-amazons-cloud/
http://www.snort.org/
http://www.scmagazine.com/signature-based-or-anomaly-based-intrusion-detection-the-practice-and-pitfalls/article/30471/
http://www.scmagazine.com/signature-based-or-anomaly-based-intrusion-detection-the-practice-and-pitfalls/article/30471/

Principles, Systems and Applications of IP Telecommunications;

Services and Security for Next Generation Networks, 2008.

[10] A. Olusola, A. Oladele, and D. Abosede, “Analysis of KDD ‟99

intrusion detection dataset for selection of relevance features,” in Proc.

The World Congress on Engineering and Computer Science, 2010.

[11] J. Han, M. Kamber, and J. Pei, “Data mining: concepts and

techniques,” The Morgan Kauffman Series in Data Management

Systems, July 2011.

[12] X.-Y. Li et al., “A new intrusion detection method based on improved

DBSCAN,” in Proc. International Conference on Information

Engineering (ICIE), 2010.

[13] WEKA: a data mining software in java open. [Online]. Available:

http://www.cs.waikato.ac.nz/ml/weka.

[14] Packet pig: open source big data security analytics on full packet

captures. [Online]. Available:

https://github.com/packetloop/packetpig.

[15] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop

distributed file system in Proc. The 2010 IEEE 26th Symposium on

Mass Storage Systems and Technologies (MSST), 2010.

[16] Apache mahout: an Apache project to produce implementations of

distributed or scalable machine learning algorithms on the Hadoop

platform. [Online]. Available: http://mahout.apache.org/.

Dinkar Sitaram is the head of the Center for Cloud

Computing and Big Data at PESIT a

Department of Computer Science and Engineering at the

PES Institute of Technology. His research interests include

scheduling and resource allocation policies for cloud

computing and hybrid clouds, as well as the usage of cloud

computing and big data techniques for audio and video

analysis. He is the author of two books - a recent book on Cloud Computing,

called “Moving to the Cloud – Developing Apps in the New World of Cloud

Computing” published by American Elsevier in December 2011. His earlier

book “Multimedia Servers” was published by Morgan Kaufman. He is the

author of over 20 patents and 25 publications. Dr. Sitaram received his Ph.D.

from the University of Wisconsin-Madison and his B.Tech from IIT

Kharagpur. As a researcher at the IBM T.J.Watson Research Center, NY Dr.

Sitaram worked on file systems and multimedia servers. He received an IBM

Outstanding Innovation Award (an IBM Corporate Award) as well as IBM

Research Division Award and several IBM Invention Achievement Awards

for his patents and research, and received outstanding paper awards for his

work. He also served on the editorial board of the Journal of High-Speed

Networking. Subsequently, he returned to India as Director of the

Technology Group at Novell Corp., Bangalore. Under his direction, the

group developed many innovative products in addition to filing for many

patents and standards proposals. Dr. Sitaram received Novell‟s Employee of

the Year award. Subsequently, Dr. Sitaram was CTO at Andiamo Systems

India (a storage networking startup), responsible for architecture and

technical direction of an advanced storage management solution. Andiamo

Systems was acquired by Cisco Systems. Most recently, Dr. Sitaram was

CTO at HP Systems Technology and Software Division, the product R&D

organization of HP in India. He focused on driving cloud and storage

technologies as part of the HP Storage Division. He also worked on file

system strategies, and high reliability for the HP Unix server division. He

was also responsible for Patents and University Relations, served on HP‟s

global patent committee, and several times on the program committee of

HP‟s internal technical conference.

Manish Sharma was born in Lucknow, India on 14th March

1976. Manish has a Master's degree in computer science from

Boston University and a Bachelor's degree in electrical and

electronics engineering from Birla Institute of Technology,

Ranchi. He has worked in IT organizations like Wipro,

Sprint, Oracle, AOL, and Guavus in various roles and has

published in international conferences like Globecom and PAM. He is

currently working as a Head for Solutions Delivery and Support for Guavus

Inc. in India and is also an Assistant Professor at PESIT, Bangalore.

Mariyah Zain was born in Mysore, India in July 1992. She

is currently pursuing her final year of Bachelor of

Engineering degree in computer science at PES Institute of

Technology (west campus), Bangalore, and is expected to

receive her degree in the year 2014. Her current research

interests lie in the fields of Data Mining, Computer security;

Cloud computing and Big Data Analytics. She was awarded

second place at an All - India Collegiate Cyber threat competition for her

research in the above mentioned fields by a leading global firm in April

2013.

Ankita Sastry was born in Bangalore, India in Feburary

1992. She has done her schooling in Sophia High School,

Bangalore and is currently pursuing her final year of

Bachelor of Engineering Degree in the field of computer

science at PES Institute of Technology (west campus),

Bangalore. She has participated in competitions related to

cyber security and also came second in an All-India Collegiate Cyber threat

competition hosted by a leading global firm, which took place in Hyderabad,

India. Her interests lie in the fields of computer security, cloud computing

and big data analytics.

Rishika Todi

year 1991. She has done her schooling in Assembly of God

Church School .She is currently pursuing her Bachelor of

Engineering Degree in the field of Computer Science at

People‟s Education Society Institute of Technology and is

expected to receive her B.E degree in Computer Science in

2014. Her interests include Big Data analytics, network

security and machine learning.

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

485

”,

nd is a professor in the

Bengal, India in the was born in Asansol, West

http://www.cs.waikato.ac.nz/ml/weka
https://github.com/packetloop/packetpig
http://mahout.apache.org/

