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Abstract—The success of any Intrusion Detection System lies 

in its ability to quickly adapt to new threats in near real time 

and further prevent new attacks. This implies extremely 

efficient machine learning algorithms in the backend, which in 

turn may use clustering algorithms capable of distinguishing 

between normal and anomalous network traffic. This work is a 

first step towards proposing such an IDS, which is built on 

clustering-based machine learning. The authors evaluate 

different clustering algorithms using a network packet trace 

and provide results, which help in evaluating these algorithms. 

The work-in-progress section of the paper visualizes the IDS 

which can be used in an environment where the traffic volumes 

are very high, enterprise boundaries are blurred, and the 

likelihood of malicious attacks is extremely high.   

 

Index Terms—Clustering, intrusion detection system, 

security. 

 

I. INTRODUCTION 

With the advent of cloud computing and increasingly 

networked enterprise networks, data sources and sinks have 

become blurred to the extent that it is almost next to 

impossible to isolate end points. Hence, it adds to the 

difficulty of detecting the source of the attack. This is further 

complicated by the fact that network and cloud 

infrastructures are shared by disparate organizations and 

enterprises. This makes it extremely hard for the network and 

security administrators to analyze the data flow in cases of 

security attacks. Moreover, the volume of data coming in and 

going out of a large public cloud is in the order of Petabytes. 

For example, it is estimated that Amazon EC2 accounts for 

1% of all the traffic on the internet [1].  

Developing attack prevention and control systems which 

can handle the volume, velocity, and variety of such data is an 

interesting challenge. Additionally, with new types of attacks 

appearing, developing flexible and adaptive security oriented 

approaches is also a severe challenge. Traditional approaches 

may not suffice to tackle the attacks prevailing today. 

Commercial computer networks administrators rely on 

special software and hardware systems called Intrusion 

Detection Systems (IDS). Typically, an IDS monitors traffic 

on the network and looks for any threats. The goal of an 

Intrusion Detection System is to automatically scan network 

activity, differentiate it into „attack‟ and „no attack‟, and 

detect intrusions. Once the attack is detected, the system is 

expected to alert the administrators so that corrective and 

preventive actions can be taken. 

Historically, signature based IDS‟s such as SNORT [2] has 
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been widely used. Such a system monitors packets on the 

network and compares them against a database of signatures 

or attributes from known malicious attacks. However, 

generating the signature of a new attack involves significant 

processing time and till the new signature is generated and is 

put to use, the IDS is rendered useless against isolating and 

protecting from the new threat. Anomaly based IDS‟s offer 

some help in this problem. In network traffic terms, an 

Anomaly-based IDS captures all the headers of the IP packets 

entering the network. It then filters out all known and legal 

traffic, including web traffic to the organization's web server, 

mail traffic to and from its mail server, outgoing web traffic 

from company employees and DNS traffic to and from its 

DNS server. Such systems monitor network traffic and 

compare it against an established baseline. The baseline 

identifies a “normality” criteria for that network in terms of 

bandwidth, protocols, ports, and devices specific to that 

network. Network and security administrators are alerted in 

the event when traffic is detected which is anomalous, or 

significantly different, than the baseline. 

In this context, anomaly-based network intrusion detection 

techniques offer valuable technology to protect target 

computer systems and networks against malicious activities 

[3]. However, despite the variety of such methods described 

in the literature in recent years [4], security tools 

incorporating anomaly detection functionalities are just 

starting to appear, and several important problems remain to 

be solved.  For example, anomaly based IDS requires 

additional hardware spread across the network than is 

required with other types of IDS‟s. Especially larger 

networks with high bandwidth connections require more 

hardware and it is therefore necessary to install the anomaly 

sensors closer to the servers and network that are being 

monitored. The rationale here is that the amount of data 

transferred is reduced if the sensors are closer to the 

application, than if they were located close toor at the 

network backbone [5]. 

Data mining methods can help an Intrusion Detection and 

Prevention system to enhance its performance in various 

ways such as analysis of stream data, visualization and 

querying tools, distributed data mining, association, 

correlation, and discriminative pattern analysis etc. 

Clustering algorithms form an important subset of data 

mining algorithms. These algorithms can analyse network 

activity and classify it as „normal‟ or „anomalous‟. Clustering 

has been widely referred to as unsupervised learning, which 

finds „natural‟ grouping of instances given a set of data. It 

partitions a given set of data objects into meaningful 

sub-classes called clusters, such that objects belonging to a 

cluster are similar to one another, yet dissimilar to objects 

belonging to other clusters. 
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In this work, we make a first attempt towards proposing a 

clustering based IDS which takes a high volume and velocity 

network traffic as input (a typical characteristic of a Big Data 

stream), and employs efficient clustering techniques to train 

an IDS in a relatively short time using a sub set of the stream. 

The trained system further detects anomalous behavior based 

on its learning in the first phase. 

The rest of the paper is structured as follows. Section II 

outlines some of the relevant work done in the area of 

learning based IDS‟s. Section III describes our methodology, 

datasets, and briefly surveys the various clustering 

algorithms. Section IV presents our experimental results 

followed by a succinct analysis in Section V. Section VI is 

one of the key sections of our work where we provide a sneak 

preview into our work-in-progress. Finally, Section VII 

presents a summary of our work and some concluding 

remarks. 

 

II. RELATED WORKS 

A system for intrusion detection based on language models 

was proposed in [6]. It proposed intrusion detection by 

extracting language features like n-grams and words from 

connection payloads, followed by applying unsupervised 

anomaly detection, i.e. applying clustering algorithms to the 

extracted data without prior learning phase or the presence of 

labelled data. One of the key aspects of this work is 

linear-time computation of similarity measures between 

language models of connection payloads.  

A framework for automatic analysis of malware behaviour 

using Machine Learning, as proposed in [7], allows 

automatic identification of novel classes of malware with 

similar behaviour (clustering) and assigning unknown 

malware to these discovered classes (classification). Hence 

the model is capable of processing the behaviour of numerous 

malware binaries on a daily basis. The incremental analysis 

significantly reduces the run-time overhead of current 

analysis methods, while providing accurate discovery and 

discrimination of novel malware variants. 

Intrusion detection can be done in two ways as discussed in 

[8]: supervised learning and unsupervised learning. Both 

types of learning were deployed in anomaly detection 

(unusual activity) and misuse detection (recognize known 

attack patterns which are signature based). By applying 

supervised learning for anomaly detection, the resulting 

algorithms were found to have low efficiency with an 

exception of SVM and k-nearest neighbors algorithm which 

proved to have a slightly better efficiency. For misuse 

detection, the best algorithms found by supervised learning 

were C4.5 and MLP algorithm. While not one specific 

algorithm was a winner in the unsupervised learning 

methodology for both anomaly and misuse detection, 

Gamma algorithm worked exceptionally well for unknown 

attacks. 

Self learning systems to detect anomalous SIP messages, 

described in [9]. A self-learning system for anomalous SIP 

messages is proposed by embedding SIP messages and 

determining a deviation from a model of normality. The 

developed model has self-learning capabilities: can 

automatically retain itself to adapt to moderate changes in 

network environment and traffic. This was tested on VOIP 

applications and attacks like Zero Day attacks and worms. 

The model performed feature extraction: each message was 

mapped to a feature vector; anomaly detection: feature 

vectors corresponding to SIP messages are compared against 

a model of normality; initialization and training: on initial 

deployment of the system as well as on a periodic basis the 

learning model is updated using traffic labelled as normal. To 

prevent external manipulation of the learning process, 

randomization, sanitization and verification of the model was 

performed. 

Almost all the previous attempts that we have surveyed 

focus on supervised or unsupervised anomaly detection based 

on set rules. There is no notion of a prior machine learning 

phase or labeled data that could be used to train the IDS. 

Moreover, none of the systems are well suited for anomaly 

detection in a cloud environment where high volume and 

high velocity traffic is involved.  While our approach uses the 

fundamentals described in the previous attempts, we focus on 

detecting anomalies through an efficient clustering algorithm 

using labeled data which can be further used to train a 

machine learning system. 

 

III. METHODOLOGY AND ALGORITHMS 

This section describes our approach to demonstrate the 

effectiveness of clustering algorithms to classify good 

packets from bad packets. We begin by describing the dataset 

used for simulating our experiments, and then briefly survey 

three different clustering algorithms used in our approach, 

and finally describe the methodology to deploy the clustering 

algorithms to cluster the sample dataset. 

A. Dataset Description 

We used the KDD Cup 1999 dataset which consists of 

42-tuple instances where each instance represents a raw 

TCP/IP packet and each attribute/value in an instance is 

extracted from the respective packet [10]. A few of the 

attributes present in the dataset are src_bytes, dest_bytes, 

wrong_fragment, dst_host_count, protocol, service, . 

The dataset contains multiple instances and was formed in a 

simulated military environment. It comprises of 24-types of 

intrusion attacks which can be categorized under 4 different 

categories of attacks, viz., Denial of Service- DOS (e.g. 

Smurf), Remote to Local-R2L (e.g. Password guessing), User 

to Root-U2R (e.g. Buffer overflow attack), and Probing (e.g. 

Port scanning). 

B. Normalization 

 

where, μ is the mean value and σ is the standard deviation of 

attribute x [11]. Normalization prevents attributes with 

numerically large values from dominating the clustering. 

C. Metric 

Determining the appropriate metric is an essential aspect 
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of any clustering algorithm. For the given problem, we chose 

the Standard Euclidean Distance [11], since most of the data 

are continuous numeric values. 

D. Clustering 

While one aspect of our work is to conceptualize packet 

classification based on prior machine learning in an 

environment where the packets arrive in continuous big data 

like streams, we also want to evaluate various clustering 

algorithms which are keys to our proposed machine learning 

techniques. We evaluated the following 3 well-known 

clustering methods: 

Partitioning methods: This method constructs k partitions 

of the data, where each partition represents a cluster and k<n. 

The data is divided into k groups, such that each group must 

contain at least one object. The general criterion of a „good‟ 

partitioning is that objects in the same cluster are „close‟ to 

one another, whereas objects belonging to different clusters 

are „far apart‟. 

Density-based methods: This method has been developed 

based on the notion of density. The general idea is to continue 

to grow a given cluster as long as the density in the 

neighborhood exceeds some threshold. 

Model-based methods: This method attempts to optimize 

the fit between the given data and some mathematical model. 

They are often based on the assumption that the data are 

generated by a mixture of underlying probability 

distributions. 

K-Means Clustering, a variant of partitioning methods is a 

centroid based clustering technique. It is one of the simplest 

unsupervised learning algorithms that solve the well known 

clustering problem [11]. The procedure follows a simple and 

easy way to classify a given data set through a certain number 

of clusters (assume k clusters) fixed a priori. The main idea is 

to define k centroids, one for each cluster. These centroids 

should be placed in a smart way because different location 

generates different result. So, the better choice is to place 

them as much as possible far away from each other. The next 

step is to take each point belonging to a given data set and 

associate it to the nearest centroid. When no point is pending, 

the first step is completed and an early grouping is done. At 

this point we need to re-calculate k new centroids as centers 

of the clusters resulting from the previous step. After we have 

these k new centroids, a new binding has to be done between 

the same data set points and the nearest new centroid thereby 

generating a loop. As a result of this loop we may notice that 

the k centroids change their location step by step until no 

more changes are done. In other words centroids do not move 

any more. Finally, this algorithm aims at minimizing an 

objective function, in this case a squared error function 

defined as: 

 

where E is the sum of the squared error, for all objects in the 

data-set; p is the point in space representing a given object; Ci 

is the centroid of the cluster, Ci. 

To obtain good results in practice, it is common to run the 

k-means algorithm multiple times with different initial cluster 

centres. The time complexity of k-means algorithm is O (nkt), 

method is relatively scalable and efficient in processing large 

data-sets. 

DBSCAN algorithm, a variant of density-based clustering, 

works on connected regions with high density [11]. It is done 

by observing the neighborhood of an object, connecting the 

objects that have dense neighborhoods to form dense regions 

as clusters [12]. This algorithm is resistant to noise and can 

handle clusters of various shapes and sizes. As the DBSCAN 

algorithm performs clustering based on the density of a point 

in the object, it has some prerequisites. Before the formation 

of the clusters actually start, we need to provide two 

parameters as input along with the object. The parameters are 

epsilon (eps) and minimum points (min_pts). Epsilon 

determines the boundary limit for the neighborhood points 

for the point in consideration, et al. points that are at a lesser 

distance than eps from the point in consideration, are 

considered as it‟s set of neighborhood points, that can help it 

getting added to a cluster provided the set has sufficient 

number of points . The min_pts specify the minimum 

threshold for the set of neighborhood points such that the 

point currently being considered, can become a candidate of a 

cluster. Density-reachable, core points, border points are a 

few concepts related to this algorithm. A point p is 

density-reachable from a point q with respect to eps, min_pts 

if there is a chain of points p1, …, pn, p1 = q, pn = p such that 

pi+1 is directly density-reachable from pi. An object with at 

least min_pts objects within a radius „eps-neighborhood‟ is a 

core object. An object that lies on the border of a cluster is a 

border object [11]. 

The algorithm is as follows:  

1)  Arbitrarily select a point (data object) p. 

2)  Retrieve all points which are density reachable from 

p wrt eps and min_pts. 

3)  If p is a core point, a cluster is formed. 

4)  If p is a border point, no points are density-reachable 

from o and DBSCAN visits the next point of the 

database. 

5)  Repeat steps 2 through 4, until all the instances from 

the data set have been processed. 

If a spatial index is used, the computational complexity of 

DBSCAN is O (nlogn), where n is the number of database 

objects. Otherwise, the complexity is O (n2). 

Expectation-Maximization algorithm, a variant of 

model-based clustering, is an iterative refinement algorithm 

that can be used to find the parameter estimates. EM assigns 

each object to a cluster according to a weight representing the 

probability of membership. Hence, new means are computed 

based on weighted measures. EM starts with an initial 

estimate or “guess” of the parameters of the mixture model. It 

iteratively rescores the objects against the mixture density 

produced by the parameter vector. The rescored objects are 

then used to update the parameter estimates. Each object is 

assigned a probability that it would possess a certain set of 

attribute values given that it was a member of a given cluster 

[11]. The algorithm is as follows: 

Make an initial guess of the parameter vector: This 

involves randomly selecting k objects to represent the cluster 

means or centres, as well as making guesses for the additional 

parameters. 

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

482

where n is the total number of objects, k is the number of 

clusters and t is the number of iterations. Therefore the 

2

1

( , )
k

i
p Ci i

E dist p c


 



  

Iteratively refine the parameters (or clusters) based on the 

following two steps: 

1)  Expectation step 

 

 

  

2)  Maximization step 

Use the probability estimates from above to re-estimate (or 

refine) the model parameters. For example, 

 

This step is the “maximization” of the likelihood of the 

distributions given the data. 

The E-step takes O (m k d) operations. Similarly, the 

M-step takes O (m k d). The EM algorithm is terminated 

before a constant number of iterations are used up. The 

computational complexity of EM algorithm is O (m k d). 

Where m is the number of sub-clusters, k is the number of 

clusters, d is the dimension of data items. 

E. Methodology 

We used the KDD Cup 1999 dataset, described earlier, for 

conducting our experiments. Only 10% of the dataset was 

used which consisted of 6170 instances spanning over a 

9-week period. Each instance consists of “label” attribute 

which is an indication whether the packet is malicious and 

also lists the type of attack. We used a popular machine 

learning software WEKA [13] to simulate a scenario where 

packets are inspected as they flow through an Intrusion 

Detection System and are further clustered as good or bad 

packets. WEKA is capable of simulating all three clustering 

algorithms described above over an arbitrary dataset such as 

the KDD Cup dataset. We evaluated the 3 clustering 

techniques mentioned earlier with the same dataset. The next 

section outlines our results and evaluation. 

 

IV. EVALUATION AND RESULTS 

We first analyzed the dataset and observed the number of 

normal versus anomalous instances, which in turn indicated 

packet distribution in the dataset. 

 
TABLE I: PACKET DISTRIBUTION IN THE DATASET 

Normal 4498 

Anomalous 1672 

Total 6170 

 

We evaluated the clustering algoithms using the same 

dataset and observed the following: 

A. K-Means Clustering Algorithm 

After setting the number of clusters as 2 and the maximum 

number of iterations as 500, as in Fig. 1 (where x-axis 

indicates the packet type and y-axis indicates the number of 

packets) we see that the number of normal packets is 4252 

and the number of anomalous packets is 1918. This is very 

close to the actual number of 4498 and 1672 respectively. No 

un-clustered packets were found and the time taken to 

execute the algorithm was 0.575 seconds. 

 

 
Fig. 1. Actual packets versus detected packets using K-means algorithm. 

 

B. 

 

 
Fig. 2. Actual packets versus detected packets using EM algorithm. 

 

We set the number of clusters as 2 and executed the 

algorithm for our dataset. As in Fig. 2 (where x-axis indicates 

the packet type and y-axis indicates the number of packets) 

we found that out of the 6170 instances, 4766 were detected 

as normal, and 1404 packets were detected as anomalous. 

There were no un-clustered packets. The time taken to 

execute the algorithm was 5.26 seconds.  

C. DBSCAN Clustering Algorithm 

 

 
Fig. 3. Actual packets versus detected packets using DBSCAN algorithm. 

 

The values for the parameters required for DBSCAN were 

taken as follows: 

 

eps- 1.0    min_pts - 800. 

 

The results as in Fig. 3 (where x-axis indicates the packet 

type and y-axis indicates the number of packets) show that 

out of 6170 instances, 2608 were detected as normal packets 

and 962 were detected as anomalous packets. The rest of the 
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packets could not be identified as they were not clustered into 

any of the two groups. Execution time for the algorithm was 

46.6 seconds. 

 

V. ANALYSIS 

Our initial experimental results indicate that 2 out of the 3 

clustering algorithms produce high fidelity results when 

compared to the actual packet distribution in the sample 

dataset. Specifically, the K-Means clustering algorithm 

produced the highest accuracy results amongst the three and 

was significantly more efficient than the EM and DBSCAN 

techniques. In fact, its execution time was one order of 

magnitude faster than the EM algorithm and two orders of 

magnitude faster than the DBSCAN algorithm. We also 

evaluated the scalability and efficiency of the K-Means 

algorithm with a large dataset of about 500K instances. The 

algorithm was able to complete the clustering in about 

600-700 seconds while maintaining the same level of 

accuracy.  

 

VI. FUTURE WORK 

The purpose of any Intrusion Detection System (IDS) is to 

be able to detect network attacks in real time (or near real 

time), isolate the attack, and recover from it. Such a system 

needs the ability to analyze packets arriving in a network or 

cloud via fat pipes (OC-192 and OC-768 links) and such data 

is a clear representation of big data streams in its most raw 

form (which is hundreds of thousands of TCP/IP packets per 

second). We envision creating such an IDS where incoming 

packets are captured, inspected, and analyzed using 

state-of-the-art Big Data analytics technologies like Hadoop 

and machine learning algorithms using open source 

technologies like Mahout. 

We are working on one such manifestation of the 

envisioned IDS using a networking monitoring tool, 

PacketPig [14], Apache Hadoop [15], and Mahout [16]. 

PacketPig is a Network Security Monitoring (NSM) Toolset 

where „Big Data‟ is full packet captures. It snoops in on the 

incoming network packets, through its integration with Snort, 

p0f and custom java loaders; PacketPig does deep packet 

inspection (DPI), file extraction, feature extraction, operating 

system detection, and other deep network analysis. Full 

packet capture is possible using Apache Hadoop. A standard 

100Mbps internet connection can be cheaply logged for 

months with a 3TB disk. Apache Hadoop is optimized around 

cheap storage and data locality: putting spindles next to 

processor cores. 

Mahout is used for machine learning in our model and 

would work on the following lines assuming a network flow 

(conversation) is defined as 5 tuple defined by source IP, 

destination IP, source port, destination port, and protocol 

number: 

1) Extract all conversations as 4 tuples or 5 tuples (with 

protocol number) and extract features out of each 

conversation to create a vector space. 

2) Extract all attacks and join the two data sets so that we 

now know what conversations are 'attacks' and what are 

„not attacks'. 

3) Train a model based on this information. 

4) Test new traffic or perform cross validation to test the 

accuracy of your model. 

 
Fig. 4. Schematic of proposed future work. 

 

A schematic of our future work is depicted in Fig. 4. 

PacketPig takes pcap files as its input and processes them 

to extract packet information. This packet information, is 

given as input to Mahout which deploys the selected 

clustering algorithm to generate clusters of “good” vs. “bad” 

packets. We use machine learning techniques in this phase. 

PacketPig helps in labeling data which in turn is used by 

machine learning algorithms to train on and test new traffic.  

 

VII. CONCLUSION 

The demonstrated the effectiveness of clustering 

algorithms with reference to clustering normal versus 

anomalous network packets. We concluded that K-Means 

clustering algorithm provides the highest level of accuracy 

with minimum time complexity. Our work is a first step in the 

direction of building an Intrusion Detection System which is 

based on the premise that network packets arriving in a public 

cloud can be treated as big data streams. State-of-the-art data 

capture and inspection techniques combined with big data 

processing technologies like Hadoop and through effective 

use of clustering algorithms deployed in the machine learning 

phase, a new IDS can be created. Such an IDS will be best 

suited in a cloud environment which is a sink for heavy 

network traffic and where network intrusion can be 

detrimental to the service providers and consumers of the 

cloud services.  
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