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Abstract—Real-time system technology traditionally 

developed for safety critical system, has now been extended to 

support multimedia system and virtual reality. A large number 

of real-time applications, related to multimedia and adaptive 

control system, require more flexibility than classical real-time 

theory usually permits. This paper proposes an efficient 

adaptive scheduling framework in real-time system based on 

period adjustment. Under this model periodic tasks can change 

their execution rates based on their importance values to keep 

the system underloaded.

Index Terms—Adaptive real-time system, scheduling 

algorithm, overload management. 

I. INTRODUCTION

The real-time scheduling paradigms, both static such as 

rate monotonic scheduling [1], and dynamic such as earliest 

deadline first scheduling, do not fit well the requirements of 

advanced real-time applications in dynamic environments. 

Real-time systems are being increasingly designed for 

complex systems. For these applications, it is sometime 

impractical or impossible to provide static guarantees to 

real-time computation. These motivations have led to the 

emergence of the adaptation and overload management as a 

major research issue in real-time systems.

An overview of prior art in overload management and 

adaptive scheduling techniques for real-time systems is given 

in Lu et al. [2]. An interesting technique for overload 

management in hard real-time control applications is 

described in Ramanathan et al. [3]. The author presents a 

scheduling policy deterministically guaranteeing  out of 

any  periodic task activations, along with a methodology 

able to minimize the effects of missed control-law updates. 

This work provides a solid foundation to graceful 

degradation policies of periodic real-time tasks. However, 

unless the overload duration is very short, the application 

could be significantly impaired by the loss of periodic 

execution for a number of real-time tasks. Dynamic Window 

Constrained Scheduling algorithm is similar except that the 

window  is fixed. Mok et al. [4] modified Dynamic 

Window Constraint Scheduling, which is primarily deadline 

based by using the concept of Pfairness to improve the 

success rate for tasks with unit size execution time. Other 

frameworks such as the imprecise computation model and 

reward based model can be applied in the situation where 

quality of service is proportional to the amount of workload

Manuscript received May 10, 2013; revised September 23, 2013.

Shri Prakash Dwivedi is with the G.B. Pant University of Agri. & Tech., 

Pantnagar, India (e-mail: shriprakashdwivedi@ gpbuat-tech.ac.in). 

completed.

The need for adaptive management of the Quality of 

Service has been widely recognized in the domain of the 

distributed multimedia systems. A graceful degradation of 

the communication subsystem is obtained in Abdelzaher and 

Shin [5] by means of QoS contracts specifying degraded 

acceptable QoS levels. Significant research has also been 

devoted to schedulers providing some degree of adaptation to 

cope with the dynamic overload environment. The need for 

scheduling systems providing real-time guarantee to a subset 

of tasks within a general operating system has been 

emphasized in the Stankovic et al. [6]. In Lu et al. [7] the 

authors assume a flexibility in timing requirements. To 

address the dynamics of the environment, they proposed a 

modified EDF adaptive scheduling framework based on 

feedback control methods and use feedback control loops to 

maintain a satisfactory deadline miss ratio when task 

execution times change.

Many real-time task models have been proposed to extend 

timing requirements beyond the hard and soft deadlines 

based on the observation that jobs can be dropped without 

severely affecting performance [8]. Despite the success of 

some models in alleviating overload situation, it is sometime 

more suitable to execute jobs less often instead of dropping 

them or allocating fewer cycles. The work in Kuo et al. [9] is 

among the first to address this type of requirement. 

Load-adjustable algorithms and value-based policies are the 

main techniques proposed for graceful recovery from 

overload. A load adjustment mechanism is proposed in [9] in 

order to handle periodic processes with varying temporal 

parameters. The aim of this work is to determine feasible time 

parameter configurations (execution time  and period  ) 

and thus modify the real-time computation for collections of 

tasks. The configuration selection problem is solved by a 

harmonic approach achieving the maximum exploitation of 

the computational resources under any time parameter 

configuration. While appealing, this approach does not lend 

itself to many real-time systems, where execution times, in 

spite of their variability, cannot be set or chosen by the 

designer.

In [10] Seto et al. considered the problem of finding a 

feasible set of task period as a non-linear programming 

problem, which seeks to optimize specific form of control 

performance measure. Cervin et al. used optimization theory 

to solve the period selection problem online by adaptively 

adjusting task periods with focus on optimizing specific 

control performance [11].

Buttazo et al. [12] proposed a flexible framework known 
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as elastic task model, where deadline misses are avoided by 

increasing task periods until some desirable utilization is 

achieved. The work in [7] extends the basic elastic task model

to handle cases where the computation time is unknown. In 

elastic task model [13], [14], periodic computations are 

modeled as springs with given elastic coefficients and 

minimum lengths. Requested variations in task execution 

rates or overload conditions are managed by changing the 

rates based on the spring’s elastic coefficients. Generalized 

elastic scheduling proposed by Chantem et al. [15], [16], by 

generalizing elastic scheduling approach. Although the 

Elastic model is nice but it does not consider the cases where 

the task periods of soft real-time systems may be unbounded 

or loosely bounded. We develop in this paper an efficient 

adaptive scheduling scheme in real-time systems through 

period adjustment, which consider the tasks having bounded 

as well as unbounded periods.

This paper is organized as follows. Section II describes 

problem definition and motivation. Section III presents our 

proposed task model and the Period Adjust algorithm and its 

features. In Section IV, we present the experimental results. 

Finally, Section V contains conclusion.

II. PROBLEM DEFINITION AND MOTIVATION

Many models have been proposed in real-time scheduling 

theory to deal with adaptive scheduling and overload 

management. Some of the proposed models are based on 

observation that less important jobs can be dropped without 

severely affecting performance. But dropping of jobs may not 

always be the best option, because it is sometime more 

suitable to execute the jobs less often instead of dropping 

them even if they are less important. Elastic task model [13] 

uses flexible framework but it do not consider the case where 

some of the soft real-time task may be loosely bounded or 

unbounded. We propose a novel scheduling framework based 

on period adjustment. Our algorithm considers the tasks 

whose periods are tightly bounded as well as the tasks whose 

periods are loosely bounded. We feel that this is more general 

model and this model performs nicely even when all tasks are 

bounded.

Many soft real-time applications require the execution of 

periodic activities, whose rate can usually be defined within a 

certain range. Higher the frequency, better the performance. 

Depending on the application domain, some tasks are rigidly 

imposed by the environment whereas other activities can be 

more flexible, producing significant results when their rates 

are within a certain range. For example, in multimedia 

systems the activities such as voice sampling, image 

acquisition, data compression, and video playing are 

performed periodically, but their execution rates are not so 

rigid. Depending on the requested quality of service, tasks 

may increase or decrease their execution rate to 

accommodate the requirements of other concurrent activities. 

However this period range may be flexible also. Suppose a 

soft real-time task has period range      , then in some 

application it may be possible to increase few time units 

above  and decrease few time units below  , if by doing so 

system become schedulable. It is sometime counter intuitive 

that a soft real-time application which is schedulable in 

range      cannot be schedulable for the range          

or alike. There are many flexible applications in multimedia 

and control applications in which we may be able to vary few 

time units across bound (upper or lower) without severely 

affecting the performance. We feel that there should be a 

general scheduling framework which can consider the 

flexible applications whose periods are unbounded along

with the bounded one.

III. PROPOSED WORK

A. Task Model

We consider the system where each task   is periodic and 

is characterized by the following tuple:

             
      

    for       . Where  is the 

number of tasks in the system,    is the worst case execution 

time and    is the initial period of    .       
denotes the 

minimum possible period of   as specified by the application 

and      
represent the maximum period beyond which the 

system performance is no longer acceptable. The weighting 

factor   represents the importance of task   , to changing its 

period in case of changes. The longer the weighting factor of 

a task, the more will be its contribution towards overall 

utilization. Given a task set  , tasks are arranged in non 

decreasing order of deadline.

Each task   in task set  is divided in to two parts.   for 

hard real-time tasks and   for soft real-time tasks such that 

         .  is the total number of tasks in the system.

  is the number of hard real-time task such that          . 
  is the number of soft real-time task such that          . 
  is the weighting factor or importance value of each soft 

real-time task in   .    ’s for soft real-time tasks are arranged 

in such a way that       
  
   , in other words   represents 

fractional importance value or percentage of importance 

value of each soft real-time task towards the whole system 

performance. Furthermore a task in   may belongs to 

        or    or           , i.e.                  

  _       where   _     consists of those soft 

real-time tasks for which an upper bound or lower bound or 

both are imposed on tasks periods prior to execution or 

during execution, and    consists of those soft real-time 

tasks which have fixed periods or which request for fixed 

periods during run time, whereas task set           consists 

of those tasks which are unbounded. As a matter of fact the 

period   cannot be less than worst case computation time   
of a task. Our scheduling algorithm emphasize such soft 

real-time applications which have more number of tasks in 

          .In this task model, all the tasks   , which does not belongs 

to         can have      
or      

equal to Φ, which means 

they are unbounded. For each        ,         which 

means that all hard real-time tasks must execute provided 

they are schedulable.   denotes the actual period of task   , 

which is constrained to be in the range       
      

 for the 
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case              , whereas   denotes the actual execution 

time considered to be known a priori. In the case of tasks with 

variable computation time,    will denote the actual worst 

case execution time. Any period variation is subject to an 

utilization guarantee and is accepted only if there exists 

feasible schedule such that tasks are schedulable by earliest 

deadline first algorithm. Hence if            , all tasks 

can be created at the minimum period    , otherwise the 

algorithm is used to adapt the task’s period to   such that 

             , where   is the actual online execution 

estimate and   is the some desired utilization factor. System 

designer can set   statically or dynamically depending upon 

requirements. In static method, all soft real time tasks are 

assigned   ’s prior to start of the task execution and these 

  ’s remains fixed up to the end of task completions. In 

dynamic method, assignment of   is event based i.e., 

weighting factor   may be reassigned during the occurrence 

of any event such as, a new task arrival or completion of a 

task.   

B. Period_Adjust Algorithm

We propose a new scheduling framework namely 

Period_Adjust algorithm which accepts set of tasks  and 

desired utilization   and return set of periods for soft 

real-time tasks. We may set   equal to the maximum 

schedulable utilization of individual scheduling algorithm. 

We can set     for dynamic scheduling algorithm like 

EDF, or we can set                for the static 

scheduling algorithm, where  is the number of independent, 

preemptable periodic tasks with relative deadline equal to 

their respective periods. In this algorithm we assume that 

deadline is equal to the period. We also assume that execution 

time   of all the task is given prior along with the periods of 

hard real-time tasks. The total task set  is divided in to two 

groups, namely the set of hard real-time tasks   , and the set 

of soft real-time tasks   . Further the set of soft real-time task 

may consists of    , in which soft real-time task request for 

fixed period,         in which tasks are bounded by 

maximum or minimum periods and           .    

Our Period_Adjust algorithm is given in Algorithm 1. It 

work as follows: The first for loop computes the utilization of 

hard real-time tasks, then algorithm computes the summation 

of all utilization of task set   to check for its feasibility. In 

the second for loop it computes the utilization of those tasks 

which request for period change, if there is no such task    
is set to 0, after that it again checks for the feasibility of 

schedulable utilization.  The third for loop computes the task 

periods of all soft real-time tasks in accordance with their 

weighting factor or importance value. Next, the algorithm 

checks whether the periods of unbounded tasks are less than 

their computation time. If period is less than computation 

time, it replaces period by computation time. Finally it checks 

whether these periods exceeds their bound for the bounded 

tasks, if this is the case it replaces periods with their bounds.

If computed   for a bounded task is less than the 

minimum period      
, we can simply replace   by      

, 

because increasing the period leads to less overall utilization. 

However if the computed period   is greater than the 

maximum period      
, we cannot simply replace   by 

     
, because decreasing the period leads to increased 

utilization, which may exceeds the schedulable utilization. 

Therefore corresponding task is replaced from bounded task 

set         to fixed period task set    and Period_Adjust 

algorithm is re-invoked. In this algorithm we assume that in 

soft real-time application there are many cases where either 

no bounds are available or no bounds are required for soft 

real-time tasks.    

Algorithm 1: Period_Adjust       
for each        do

         
  

  

end for

      
        
if       then

    return  infeasible

end if 

for each         do

         
  

    

end for

       
            
if       then

    return  infeasible

end if 

for each              do

         
  

    

     
        

            

     return   
end for 

for each                       do

     if        then

              
     end if

end for

mod = 0

for each              do

     if          
 then

                 

    else

        if          
 then

                     

                                      
                       
             mod = 1

         end if

      end if 

end for 

if ( mod = = 1) then

    return Period_Adjust       
end if 

IV. EXPERIMENTAL RESULTS

In this section we present the experimental results 

performed on our task model. We consider period selection 

with deadline equal to periods. In all the following tables here 



  

 

 

 

 

 
   

      

      

      
      
      
      

 

 

 

 

 
   

      

      

      
      
      
      

 

 

 

 
   

      

      

      
      
      
      

 

 

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

469

onwards periods           
      

 and computation times 

    are expressed in milliseconds (ms).

TABLE I: TASK SET PARAMETERS

Task           
     

  

  18 100 50 150 0.30

  18 100 50 150 0.30

  18 100 50 150 0.30

  18 100 50 150 0.30

  18 100 50 150 0.30

To execute the Period_Adjust algorithm, we first use the 

task set parameters given in Table I. In this experiment, all 

tasks start at time 0 with an initial period of 100 time units 

and the task set is schedulable under EDF. Here the required 

maximum utilization of the overall system is 
  

  
 

  

  
 

  

  
 

  

  
 

  

  
 1.8, whereas the required minimum utilization of 

the overall system is 
  

   
 

  

   
 

  

   
 

  

   
 

  

   
 0.6. Since 

the current utilization is
  

   
 

  

   
 

  

   
 

  

   
 

  

   
 0.90, 

the task set is schedulable under EDF. Assume that, at 10sec, 

  needs to reduce its period to 50 time units, due to some 

changes in system dynamics not experienced by other tasks. 

Since the new required utilization of the system is 
  

  
 

  

   
 

  

   
 

  

   
 

  

   
 1.08, which is greater than 1, and therefore 

as such it is not schedulable under EDF. We can observe that 

the required minimum utilization of the system is 
  

  
 

  

   
 

  

   
 

  

   
 

  

   
 0.84, which is less than 1. Therefore to 

allow for    to change its period, the periods of tasks   ,    ,

  ,   must increase for the system to remain schedulable. At 

time 20sec,   goes to back to its initial period state. Fig. 1 

shows the cumulative number of executed instances for each 

task as its period changes over time. When we execute the 

Period_Adjust algorithm on the above task set, it will return 

the feasible set of task periods                   
110,  4=138,   5=150.

Fig. 1. Dynamic period change using Period_Adjust.

Now we consider the same task set parameters with some 

change. Here we assume that soft real-time tasks   and   
are not bounded, i.e. although the preferable maximum 

period is 150, some flexibility is provided by the application 

to increase or decrease the bound. In this case assume that at 

10sec,   needs to reduce its period to 60 time units, as shown 

in Table II.

TABLE II: TASK SET PARAMETERS

Task           
     

  

  18 50 50 150 0.30

  18 60 50 150 0.30

  18 100 50 150 0.18

  18 100 Φ Φ 0.12

  18 100 Φ Φ 0.10

For these task set parameters Task_compress  algorithm

[12] is infeasible, whereas Period_Adjust algorithm is 

feasible. In fact when we execute the Period_Adjust

algorithm on the above task sets, the corresponding periods 

obtained for the tasks are shown in Fig. 2. (  = 50,   = 60, 

  = 147,   =155,   = 175).

Fig. 2. Dynamic period change which is feasible by Period_Adjust only.

Now we consider the task set parameters given in Table III 

for the case of admission control policy during dynamic task 

activation. 

TABLE III: TASK SET PARAMETERS

Task           
     

  

  30 100 50 350 0.20

  50 200 50 350 0.20

  70 300 50 350 0.20

  10 100 50 350 0.20

  10 70 50 350 0.20

In this experiment   ,   and   starts at time 0. They have 

the current utilization  
  

   
 

  

   
 

  

   
 0.78 and therefore 

schedulable by EDF. At time 10sec two tasks   and   

arrives, which makes the total utilization 
  

   
 

  

   
 

  

   
 

  

   
 

  

  
 1.03. In order to allow the tasks   and   for 

execution, tasks   ,   and   can increase their period. Since 

both tasks   and   are of 10sec duration, after 20sec tasks 

  ,   and   return to their previous periods, as shown in Fig. 

3 (Dynamic task activation). Now we consider the above task 

set parameters with some modification. In this case   and   
arrives 10sec having the computation time 30ms and 20ms 

respectively as shown in Table IV.

Here task   is loosely bounded (period of task   should 

be preferably between 50 and 350 but not necessarily). In this 

case total utilization is   
  

   
 

  

   
 

  

   
 

  

   
 

  

  
 

1.37. Obviously the task set is not schedulable. In this case 
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also Task_compress algorithm is infeasible, while 

Period_Adjust is feasible. On execution periods returned by 

the Period_Adjust algorithm are (  = 150,   = 250,   = 355, 

  =150,   = 200).     

TABLE IV: TASK SET PARAMETERS

Task           
     

  

  30 100 50 350 0.20

  50 200 50 350 0.20

  70 300 Φ Φ 0.20

  30 100 50 350 0.20

  20 70 50 350 0.20

Fig. 3. Dynamic task activation using Period_Adjust.

For the comparison purpose, here we use the task set 

parameters in [14], and we show that Period_Adjust work 

nicely in this case also.

Task set parameters are shown in Table V. In this 

experiment four periodic tasks are created at time  = 0, All 

the tasks start executing at their initial period, at  = 10sec,   
decreases its period from 100ms to 33ms. At  = 20sec,   
return to its initial period. The result of the application of 

Period_Adjust algorithm and Task_compress algorithm on 

the above task set are shown in the Fig. 4. It shows the actual 

number of instances executed by each task as a function of 

time.

TABLE V: TASK SET PARAMETERS

Task           
     

    

  24 100 30 500 1 0.30

  24 100 30 500 1 0.30

  24 100 30 500 1.5 0.25

  24 100 30 500 2 0.15

V. CONCLUSION AND FUTURE WORK

In this paper we have suggested Period Adjust algorithm 

for scheduling of tasks in which periods of soft real-time 

tasks are flexible. In this framework, periodic tasks can 

change their importance value to provide different quality of 

service. Importance value or weighting factor of soft 

real-time tasks is arranged in such a manner to keep the 

system underloaded. What makes Period Adjust more 

interesting is that it considers those soft real-time tasks whose 

periods are unbounded. The Period Adjust model is useful for 

supporting both multimedia systems and control applications 

in which the execution rates of some computational activities 

cannot be properly predicted and they have to be dynamically 

tuned as a function of the current system state.

We feel that Period Adjust model is a general model which 

can be applied in many applications. This framework can be 

extended to support the cases where deadline is less than 

period and computation time is variable.
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