

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

466DOI: 10.7763/IJIMT.2013.V4.443



Abstract—Real-time system technology traditionally

developed for safety critical system, has now been extended to

support multimedia system and virtual reality. A large number

of real-time applications, related to multimedia and adaptive

control system, require more flexibility than classical real-time

theory usually permits. This paper proposes an efficient

adaptive scheduling framework in real-time system based on

period adjustment. Under this model periodic tasks can change

their execution rates based on their importance values to keep

the system underloaded.

Index Terms—Adaptive real-time system, scheduling

algorithm, overload management.

I. INTRODUCTION

The real-time scheduling paradigms, both static such as

rate monotonic scheduling [1], and dynamic such as earliest

deadline first scheduling, do not fit well the requirements of

advanced real-time applications in dynamic environments.

Real-time systems are being increasingly designed for

complex systems. For these applications, it is sometime

impractical or impossible to provide static guarantees to

real-time computation. These motivations have led to the

emergence of the adaptation and overload management as a

major research issue in real-time systems.

An overview of prior art in overload management and

adaptive scheduling techniques for real-time systems is given

in Lu et al. [2]. An interesting technique for overload

management in hard real-time control applications is

described in Ramanathan et al. [3]. The author presents a

scheduling policy deterministically guaranteeing out of

any periodic task activations, along with a methodology

able to minimize the effects of missed control-law updates.

This work provides a solid foundation to graceful

degradation policies of periodic real-time tasks. However,

unless the overload duration is very short, the application

could be significantly impaired by the loss of periodic

execution for a number of real-time tasks. Dynamic Window

Constrained Scheduling algorithm is similar except that the

window is fixed. Mok et al. [4] modified Dynamic

Window Constraint Scheduling, which is primarily deadline

based by using the concept of Pfairness to improve the

success rate for tasks with unit size execution time. Other

frameworks such as the imprecise computation model and

reward based model can be applied in the situation where

quality of service is proportional to the amount of workload

Manuscript received May 10, 2013; revised September 23, 2013.

Shri Prakash Dwivedi is with the G.B. Pant University of Agri. & Tech.,

Pantnagar, India (e-mail: shriprakashdwivedi@ gpbuat-tech.ac.in).

completed.

The need for adaptive management of the Quality of

Service has been widely recognized in the domain of the

distributed multimedia systems. A graceful degradation of

the communication subsystem is obtained in Abdelzaher and

Shin [5] by means of QoS contracts specifying degraded

acceptable QoS levels. Significant research has also been

devoted to schedulers providing some degree of adaptation to

cope with the dynamic overload environment. The need for

scheduling systems providing real-time guarantee to a subset

of tasks within a general operating system has been

emphasized in the Stankovic et al. [6]. In Lu et al. [7] the

authors assume a flexibility in timing requirements. To

address the dynamics of the environment, they proposed a

modified EDF adaptive scheduling framework based on

feedback control methods and use feedback control loops to

maintain a satisfactory deadline miss ratio when task

execution times change.

Many real-time task models have been proposed to extend

timing requirements beyond the hard and soft deadlines

based on the observation that jobs can be dropped without

severely affecting performance [8]. Despite the success of

some models in alleviating overload situation, it is sometime

more suitable to execute jobs less often instead of dropping

them or allocating fewer cycles. The work in Kuo et al. [9] is

among the first to address this type of requirement.

Load-adjustable algorithms and value-based policies are the

main techniques proposed for graceful recovery from

overload. A load adjustment mechanism is proposed in [9] in

order to handle periodic processes with varying temporal

parameters. The aim of this work is to determine feasible time

parameter configurations (execution time and period)

and thus modify the real-time computation for collections of

tasks. The configuration selection problem is solved by a

harmonic approach achieving the maximum exploitation of

the computational resources under any time parameter

configuration. While appealing, this approach does not lend

itself to many real-time systems, where execution times, in

spite of their variability, cannot be set or chosen by the

designer.

In [10] Seto et al. considered the problem of finding a

feasible set of task period as a non-linear programming

problem, which seeks to optimize specific form of control

performance measure. Cervin et al. used optimization theory

to solve the period selection problem online by adaptively

adjusting task periods with focus on optimizing specific

control performance [11].

Buttazo et al. [12] proposed a flexible framework known

An Adaptive Scheduling Algorithm Using Period

Adjustment

Shri Prakash Dwivedi

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

467

as elastic task model, where deadline misses are avoided by

increasing task periods until some desirable utilization is

achieved. The work in [7] extends the basic elastic task model

to handle cases where the computation time is unknown. In

elastic task model [13], [14], periodic computations are

modeled as springs with given elastic coefficients and

minimum lengths. Requested variations in task execution

rates or overload conditions are managed by changing the

rates based on the spring’s elastic coefficients. Generalized

elastic scheduling proposed by Chantem et al. [15], [16], by

generalizing elastic scheduling approach. Although the

Elastic model is nice but it does not consider the cases where

the task periods of soft real-time systems may be unbounded

or loosely bounded. We develop in this paper an efficient

adaptive scheduling scheme in real-time systems through

period adjustment, which consider the tasks having bounded

as well as unbounded periods.

This paper is organized as follows. Section II describes

problem definition and motivation. Section III presents our

proposed task model and the Period Adjust algorithm and its

features. In Section IV, we present the experimental results.

Finally, Section V contains conclusion.

II. PROBLEM DEFINITION AND MOTIVATION

Many models have been proposed in real-time scheduling

theory to deal with adaptive scheduling and overload

management. Some of the proposed models are based on

observation that less important jobs can be dropped without

severely affecting performance. But dropping of jobs may not

always be the best option, because it is sometime more

suitable to execute the jobs less often instead of dropping

them even if they are less important. Elastic task model [13]

uses flexible framework but it do not consider the case where

some of the soft real-time task may be loosely bounded or

unbounded. We propose a novel scheduling framework based

on period adjustment. Our algorithm considers the tasks

whose periods are tightly bounded as well as the tasks whose

periods are loosely bounded. We feel that this is more general

model and this model performs nicely even when all tasks are

bounded.

Many soft real-time applications require the execution of

periodic activities, whose rate can usually be defined within a

certain range. Higher the frequency, better the performance.

Depending on the application domain, some tasks are rigidly

imposed by the environment whereas other activities can be

more flexible, producing significant results when their rates

are within a certain range. For example, in multimedia

systems the activities such as voice sampling, image

acquisition, data compression, and video playing are

performed periodically, but their execution rates are not so

rigid. Depending on the requested quality of service, tasks

may increase or decrease their execution rate to

accommodate the requirements of other concurrent activities.

However this period range may be flexible also. Suppose a

soft real-time task has period range , then in some

application it may be possible to increase few time units

above and decrease few time units below , if by doing so

system become schedulable. It is sometime counter intuitive

that a soft real-time application which is schedulable in

range cannot be schedulable for the range

or alike. There are many flexible applications in multimedia

and control applications in which we may be able to vary few

time units across bound (upper or lower) without severely

affecting the performance. We feel that there should be a

general scheduling framework which can consider the

flexible applications whose periods are unbounded along

with the bounded one.

III. PROPOSED WORK

A. Task Model

We consider the system where each task is periodic and

is characterized by the following tuple:

 for . Where is the

number of tasks in the system, is the worst case execution

time and is the initial period of .
denotes the

minimum possible period of as specified by the application

and
represent the maximum period beyond which the

system performance is no longer acceptable. The weighting

factor represents the importance of task , to changing its

period in case of changes. The longer the weighting factor of

a task, the more will be its contribution towards overall

utilization. Given a task set , tasks are arranged in non

decreasing order of deadline.

Each task in task set is divided in to two parts. for

hard real-time tasks and for soft real-time tasks such that

 . is the total number of tasks in the system.

 is the number of hard real-time task such that .
 is the number of soft real-time task such that .
 is the weighting factor or importance value of each soft

real-time task in . ’s for soft real-time tasks are arranged

in such a way that

 , in other words represents

fractional importance value or percentage of importance

value of each soft real-time task towards the whole system

performance. Furthermore a task in may belongs to

 or or , i.e.

 _ where _ consists of those soft

real-time tasks for which an upper bound or lower bound or

both are imposed on tasks periods prior to execution or

during execution, and consists of those soft real-time

tasks which have fixed periods or which request for fixed

periods during run time, whereas task set consists

of those tasks which are unbounded. As a matter of fact the

period cannot be less than worst case computation time
of a task. Our scheduling algorithm emphasize such soft

real-time applications which have more number of tasks in

 .In this task model, all the tasks , which does not belongs

to can have
or

equal to Φ, which means

they are unbounded. For each , which

means that all hard real-time tasks must execute provided

they are schedulable. denotes the actual period of task ,

which is constrained to be in the range

 for the

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

468

case , whereas denotes the actual execution

time considered to be known a priori. In the case of tasks with

variable computation time, will denote the actual worst

case execution time. Any period variation is subject to an

utilization guarantee and is accepted only if there exists

feasible schedule such that tasks are schedulable by earliest

deadline first algorithm. Hence if , all tasks

can be created at the minimum period , otherwise the

algorithm is used to adapt the task’s period to such that

 , where is the actual online execution

estimate and is the some desired utilization factor. System

designer can set statically or dynamically depending upon

requirements. In static method, all soft real time tasks are

assigned ’s prior to start of the task execution and these

 ’s remains fixed up to the end of task completions. In

dynamic method, assignment of is event based i.e.,

weighting factor may be reassigned during the occurrence

of any event such as, a new task arrival or completion of a

task.

B. Period_Adjust Algorithm

We propose a new scheduling framework namely

Period_Adjust algorithm which accepts set of tasks and

desired utilization and return set of periods for soft

real-time tasks. We may set equal to the maximum

schedulable utilization of individual scheduling algorithm.

We can set for dynamic scheduling algorithm like

EDF, or we can set for the static

scheduling algorithm, where is the number of independent,

preemptable periodic tasks with relative deadline equal to

their respective periods. In this algorithm we assume that

deadline is equal to the period. We also assume that execution

time of all the task is given prior along with the periods of

hard real-time tasks. The total task set is divided in to two

groups, namely the set of hard real-time tasks , and the set

of soft real-time tasks . Further the set of soft real-time task

may consists of , in which soft real-time task request for

fixed period, in which tasks are bounded by

maximum or minimum periods and .

Our Period_Adjust algorithm is given in Algorithm 1. It

work as follows: The first for loop computes the utilization of

hard real-time tasks, then algorithm computes the summation

of all utilization of task set to check for its feasibility. In

the second for loop it computes the utilization of those tasks

which request for period change, if there is no such task
is set to 0, after that it again checks for the feasibility of

schedulable utilization. The third for loop computes the task

periods of all soft real-time tasks in accordance with their

weighting factor or importance value. Next, the algorithm

checks whether the periods of unbounded tasks are less than

their computation time. If period is less than computation

time, it replaces period by computation time. Finally it checks

whether these periods exceeds their bound for the bounded

tasks, if this is the case it replaces periods with their bounds.

If computed for a bounded task is less than the

minimum period
, we can simply replace by

,

because increasing the period leads to less overall utilization.

However if the computed period is greater than the

maximum period
, we cannot simply replace by

, because decreasing the period leads to increased

utilization, which may exceeds the schedulable utilization.

Therefore corresponding task is replaced from bounded task

set to fixed period task set and Period_Adjust

algorithm is re-invoked. In this algorithm we assume that in

soft real-time application there are many cases where either

no bounds are available or no bounds are required for soft

real-time tasks.

Algorithm 1: Period_Adjust
for each do

end for

if then

 return infeasible

end if

for each do

end for

if then

 return infeasible

end if

for each do

 return
end for

for each do

 if then

 end if

end for

mod = 0

for each do

 if
 then

 else

 if
 then

 mod = 1

 end if

 end if

end for

if (mod = = 1) then

 return Period_Adjust
end if

IV. EXPERIMENTAL RESULTS

In this section we present the experimental results

performed on our task model. We consider period selection

with deadline equal to periods. In all the following tables here

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

469

onwards periods

 and computation times

 are expressed in milliseconds (ms).

TABLE I: TASK SET PARAMETERS

Task

 18 100 50 150 0.30

 18 100 50 150 0.30

 18 100 50 150 0.30

 18 100 50 150 0.30

 18 100 50 150 0.30

To execute the Period_Adjust algorithm, we first use the

task set parameters given in Table I. In this experiment, all

tasks start at time 0 with an initial period of 100 time units

and the task set is schedulable under EDF. Here the required

maximum utilization of the overall system is

 1.8, whereas the required minimum utilization of

the overall system is

 0.6. Since

the current utilization is

 0.90,

the task set is schedulable under EDF. Assume that, at 10sec,

 needs to reduce its period to 50 time units, due to some

changes in system dynamics not experienced by other tasks.

Since the new required utilization of the system is

 1.08, which is greater than 1, and therefore

as such it is not schedulable under EDF. We can observe that

the required minimum utilization of the system is

 0.84, which is less than 1. Therefore to

allow for to change its period, the periods of tasks , ,

 , must increase for the system to remain schedulable. At

time 20sec, goes to back to its initial period state. Fig. 1

shows the cumulative number of executed instances for each

task as its period changes over time. When we execute the

Period_Adjust algorithm on the above task set, it will return

the feasible set of task periods
110, 4=138, 5=150.

Fig. 1. Dynamic period change using Period_Adjust.

Now we consider the same task set parameters with some

change. Here we assume that soft real-time tasks and
are not bounded, i.e. although the preferable maximum

period is 150, some flexibility is provided by the application

to increase or decrease the bound. In this case assume that at

10sec, needs to reduce its period to 60 time units, as shown

in Table II.

TABLE II: TASK SET PARAMETERS

Task

 18 50 50 150 0.30

 18 60 50 150 0.30

 18 100 50 150 0.18

 18 100 Φ Φ 0.12

 18 100 Φ Φ 0.10

For these task set parameters Task_compress algorithm

[12] is infeasible, whereas Period_Adjust algorithm is

feasible. In fact when we execute the Period_Adjust

algorithm on the above task sets, the corresponding periods

obtained for the tasks are shown in Fig. 2. (= 50, = 60,

 = 147, =155, = 175).

Fig. 2. Dynamic period change which is feasible by Period_Adjust only.

Now we consider the task set parameters given in Table III

for the case of admission control policy during dynamic task

activation.

TABLE III: TASK SET PARAMETERS

Task

 30 100 50 350 0.20

 50 200 50 350 0.20

 70 300 50 350 0.20

 10 100 50 350 0.20

 10 70 50 350 0.20

In this experiment , and starts at time 0. They have

the current utilization

 0.78 and therefore

schedulable by EDF. At time 10sec two tasks and

arrives, which makes the total utilization

 1.03. In order to allow the tasks and for

execution, tasks , and can increase their period. Since

both tasks and are of 10sec duration, after 20sec tasks

 , and return to their previous periods, as shown in Fig.

3 (Dynamic task activation). Now we consider the above task

set parameters with some modification. In this case and
arrives 10sec having the computation time 30ms and 20ms

respectively as shown in Table IV.

Here task is loosely bounded (period of task should

be preferably between 50 and 350 but not necessarily). In this

case total utilization is

1.37. Obviously the task set is not schedulable. In this case

International Journal of Innovation, Management and Technology, Vol. 4, No. 5, October 2013

470

also Task_compress algorithm is infeasible, while

Period_Adjust is feasible. On execution periods returned by

the Period_Adjust algorithm are (= 150, = 250, = 355,

 =150, = 200).

TABLE IV: TASK SET PARAMETERS

Task

 30 100 50 350 0.20

 50 200 50 350 0.20

 70 300 Φ Φ 0.20

 30 100 50 350 0.20

 20 70 50 350 0.20

Fig. 3. Dynamic task activation using Period_Adjust.

For the comparison purpose, here we use the task set

parameters in [14], and we show that Period_Adjust work

nicely in this case also.

Task set parameters are shown in Table V. In this

experiment four periodic tasks are created at time = 0, All

the tasks start executing at their initial period, at = 10sec,
decreases its period from 100ms to 33ms. At = 20sec,
return to its initial period. The result of the application of

Period_Adjust algorithm and Task_compress algorithm on

the above task set are shown in the Fig. 4. It shows the actual

number of instances executed by each task as a function of

time.

TABLE V: TASK SET PARAMETERS

Task

 24 100 30 500 1 0.30

 24 100 30 500 1 0.30

 24 100 30 500 1.5 0.25

 24 100 30 500 2 0.15

V. CONCLUSION AND FUTURE WORK

In this paper we have suggested Period Adjust algorithm

for scheduling of tasks in which periods of soft real-time

tasks are flexible. In this framework, periodic tasks can

change their importance value to provide different quality of

service. Importance value or weighting factor of soft

real-time tasks is arranged in such a manner to keep the

system underloaded. What makes Period Adjust more

interesting is that it considers those soft real-time tasks whose

periods are unbounded. The Period Adjust model is useful for

supporting both multimedia systems and control applications

in which the execution rates of some computational activities

cannot be properly predicted and they have to be dynamically

tuned as a function of the current system state.

We feel that Period Adjust model is a general model which

can be applied in many applications. This framework can be

extended to support the cases where deadline is less than

period and computation time is variable.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling algorithm for

multiprogramming in hard real-time environment,” Journal of ACM,

vol. 20, 1973.

[2] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son, “Design and evaluation

of a feedback control edf scheduling algorithm,” in Proc. IEEE

Real-Time Systems Symposium, 1999.

[3] P. Ramanathan, “Overload management in real-time control

application using (m,k) firm guarantee,” Transactions on Parallel and

Distributed Systems, 1999.

[4] A. Mok and W. Wang, “Window constrained real time periodic

schedul-ing,” in Proc. IEEE Real-Time Systems Symposium, 2001.

[5] T. F. Abdelzaher and K. G. Shin, “End-Host architecture for

QoS-adaptive communication,” in Proc. IEEE Real-Time Technology

and Application Symposium, 1998.

[6] J. A. Stankovic, C. Lu, S. H. Son, and G. Tao, “The case for feedback

control real-time scheduling,” in Proc. Euromicro Conference on

Real-Time Systems, 1999.

[7] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son, “Design and evaluation

of a feedback control edf scheduling algorithm,” in Proc. IEEE

Real-Time Systems Symposium, 1999.

[8] G. Bernat, A. Burns, and A. Llamosi, “Weakely hard real-time

systems,” IEEE Transaction on Computers, 2001.

[9] T. W. Kuo and A. Mok, “Load adjustment in adaptive real-time

systems,” in Proc. IEEE Real-Time Systems Symposium, 1991.

[10] D. Seto, J. Lehoczky, and L. Sha, “Task period selection and

schedulability in real-time systems,” in Proc. IEEE Real-Time Systems

Symposium, 1998.

[11] A. Cervin, J. Eker, and B. Bernhardsson, “Feedback-Feedforward

scheduling control tasks,” Real-Time System Journal, vol. 23, 2002.

[12] G. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for adaptive

rate control,” in Proc. IEEE Real-Time Systems Symposium, 1998.

[13] G. Buttazzo and L. Abeni, “Adaptive workload management through

elastic scheduling,” Real-Time System Journal, vol. 23, 2002.

[14] G. Buttazzo, G. Lipari, and L. Abeni, “Elastic scheduling for flexible

workload management,” IEEE Transactions on Computers, 2002.
[15] T. Chantem, X. S. Hu, and M. D. Lemmon, “Generalized elastic

scheduling,” in Proc. IEEE Real-Time Systems Symposium, 2006.

[16] T. Chantem, X. S. Hu, and M. D. Lemmon, “Generalized elastic

scheduling for real-time tasks,” 2007.

Shri Prakash Dwivedi is Assistant Professor in Department of Information

Technology of G.B. Pant University of Agri. & Tech. Pantnagar, India. He is

a member of IACSIT. His current areas of interest are algorithms and

computing.

Fig. 4. Period_Adjust vs Task compress.

