

Abstract—Mining software bugs provides a way to develop

reliable software. Developers can improve software quality by

retrieving, analyzing and fixing software bugs. In this paper we

present a technique for semantic concept based retrieval of

software bug report. The technique combines folksonomy,

keyword and facet-based retrieval methods satisfying

developers and users’ need. The technique improves the

efficiency of software bug report retrieval by applying semantic

concepts. Developers are likely to find the reason of software

failure and fix the bugs by using this technique. Finally, we

provide a case study to show the feasibility of our technique.

Index Terms—Software mining, bugs classification, semantic

concepts, folksonomy.

I. INTRODUCTION

Software quality and development productivity have been

considered important. Moreover, they recently became more

critical issues as many developers and technologies are

involved in constructing software systems. Software bug [1],

[2] is a fault or defect in the software. Bug repositories

contain information about software failure including how the

failure occurred and how it was fixed. If appropriate software

bug report can be retrieved to fix them in the development,

software quality and productivity may be improved.

To achieve the task, software bug information have been

extracted and predicted from history [3], [4]. Semantic web

has been applied to provide an enhanced interface for bug

resolution message and assess the quality of related software

artifacts [5], [6]. Some studies have proposed a generic

interface and data structure to handle trouble/bug

management [7], [8]. Unified data model was used to support

semantic bug search [7]. If they consider developers and

users’ feedback, the quality of bug search is likely to be

improved.

For these reasons, we propose a software bug report

retrieval technique which employs a semantic concept based

classification [9]. Developers and users retrieve appropriate

software bug data by entering keywords. This technique

Manuscript received October 15, 2012; revised March 20, 2013. This

work was supported by Basic Science Research Program through the

National Research Foundation of Korea (NRF) funded by the Ministry of

Education, Science and Technology (No. 2011-0026461).

T. Zhang and B. Lee are with the School of Computer Science, University

of Seoul, Seoul, Korea (e-mail: kerryking@ ieee.org, bjlee@uos.ac.kr).

H. Kim and J. Lee are with the Department of Electrical and Computer

Engineering, University of Seoul, Seoul, Korea (e-mail: khj@uos.ac.kr,

jaeho@uos.ac.kr).

S. Kang is with the Division of Computer Science and Engineering,

Hanyang University, Seoul, Korea (e-mail: sykang@hanyang.ac.kr).

I. Shin is with the Department of Electronics and Information

Engineering, Seoul National University of Science & Technology, Seoul,

Korea (email: ilhoon.shin@snut.ac.kr).

utilizes semantic concepts to improve the accuracy of

retrieval. Moreover, to satisfy developers and users' need, the

system allows them to submit the feedback information

This technique combines keyword search and folksonomy

[10] search for software bugs retrieval. As a popular

classification technique, folksonomy allows users to label the

documents on the web according to their meaning. Even if

there are many advantages as folksonomy, the major

drawback is a lack of semantic information. In order to get rid

of this disadvantage of folksonomy, we apply a semantic

concept model to enhance semantic analysis.

Our paper is organized as follow: Section II presents

related work. Section III describes the processing of software

bug data retrieval system. Section IV presents an algorithm of

semantic concept model-based technique. In Section V, we

demonstrate the feasibility of the retrieval system by the

experiment. Finally, we summarize our work and introduce

future work in Section VI.

II. RELATED WORK

In recent studies, web-based bug tracking systems were

developed to offer large archives of useful troubleshooting

advice. A semantics-based bug search systems [7], [11] have

been proposed to implement retrieval of software bugs. The

system took advantage of the semi-structured data found in

widely used bug tracking systems. In the work, the authors

describe how to crawl bug tracking system and to extract data

and apply a multi-vector representation (MVR) to bug reports

to enable semi-structured bug data search on the bug database.

The semantics-based bug search system has gotten the better

result because of using semantics. A unified data model to

store bug tracking data has been derived from the analysis of

the most popular systems. The data model has already

defined classes and properties that can be used to produce an

ontology in the RDF schema language. The crawled data was

fed into a semantic search engine.

An enhanced semantic interface to bug resolution

messages in Dhruv [5] takes users to cross-links page, which

provides further detail on the clicked term. Also, a number of

message recommendations of people, source files, and bug

reports are provided. Dhruv determines these

recommendations by taking into account the semantic

cross-links of each term in the message.

III. RETRIEVAL OF SOFTWARE BUG DATA

As described in Section I, with our retrieval technique,

developers and users can find appropriate software bug data

and related solutions. In order to enhance the accuracy of

Semantic Concept Based Retrieval of Software Bug Report

with Feedback

Tao Zhang, Byungjeong Lee, Hanjoon Kim, Jaeho Lee, Sooyong Kang, and Ilhoon Shin

International Journal of Innovation, Management and Technology, Vol. 4, No. 3, June 2013

356DOI: 10.7763/IJIMT.2013.V4.421

retrieval, it is important to consider semantic concept model

and get rid of ambiguity of tags. Thus, our system is designed

to satisfy the following requirements:

 Goal: By providing high-quality tags, developers and
users can retrieve related software bugs and solutions.

 Utility: Since different users have different perspectives,
the system should adapt to users' interests.

 Lightweight: The system should require developers and
users to do litter work to get high-quality result of
software bugs retrieval.

 Robustness: Even if the number of users' varieties is
large, the robustness of the system is still maintained.

In order to implement the above the requirements of the

system, we apply a semantic concept model based technique

to recommend high-quality tags to developers and users. Fig.

1 shows a processing of the system.

Fig. 1. System processing.

At the beginning of retrieval process, Developers can

produce software bug and its solution report and label it by

adding a tag. Similar tags are clustered by semantic analysis.

If users input a query which includes the keyword and the

facet information, our sys-tem recommends related tags.

Developers and users can rate the recommended tags to

improve the quality of tag recommendation. Finally,

developers get the software bug and its solution that they

want by submitting recommended tags. The detailed

description about the modules of the proposed system is

following:

Classification Module: This module is used to cluster

related tags into categories. After developers created a new

software bug report which includes a bug description and

related solution and label it by tags, ac-cording to the

clustering algorithm, the tags will be grouped into clusters.

Keyword & Tag based Search: This module is the core

of our system. In this module, we apply semantic concept

model. Actually, the semantic concept model is a hierarchical

structure including tags and related se-mantic concept. The

semantic concept model describes the relationship between

tags and related semantic concepts. Thus, it helps users and

developers retrieve related software bugs description and

solution information. If user chooses an appropriate semantic

concept, our system shows a result list of software bugs.

User feedback: After our system shows the results list of

software bugs and related solutions, users can rate related

solutions and provide the comments. This module manages

and stores users' feedback information. The module records

user information in order to improve the performance of the

retrieval system.

IV. SEMANTIC CONCEPT BASED TECHNIQUE

A. Keyword Based Retrieval

If developers only enter appropriate keyword and facet

information, the related software bug report should be

showed. If the information developers input is the same as the

data of database, our retrieval system shows directly

developers related bug report.

Fig. 2. Bug report meta-model.

We propose 4C meta-model for the bug report, which has

been extended from 3C model [12] (Fig. 2). The bug

meta-model has concept, contents, context, and classification

properties. This model must be simple and easy to use for

semantic search. The concept property indicates basic

information such as bug name, author, date and description.

The contents property represents software information

including the bug such as module, source code, language and

solution. The context property describes a situation which the

bug occurred within including condition and effects. The

classification property shows tags labeled by developers and

users such as type information. Other information can be

added to each property if necessary.

B. Folksonomy

Keywords users input to label resources are called tags.

Developers can use any tag to notate the software bugs. Tags

are clustered to classify bugs.

Fig. 3 shows an example of tagging. In this example, the

frequency of using bug "Slowdown" to label module

"Process Scheduler" is the highest (8 times) and the

frequency of using tag "Process Terminated" to label the

module is the second highest (6 times). Thus, "Slowdown"

International Journal of Innovation, Management and Technology, Vol. 4, No. 3, June 2013

357

and "Process Terminated" are classified into the same

category with respect to module "Process Scheduler". Other

bugs are also classified into a category with respect to related

modules like this.

Fig. 3. An example of software tagging.

C. Semantic Concept Model

We apply semantic concept model to eliminate tag

ambiguity. Thus, the accuracy of tag recommendation can be

reinforced. In this study, the idea of concept network [9] is

used to share the common understanding of semantic

concepts to describe software bugs. So in our system,

semantic concept model consists of tags and related semantic

concepts. Formally, we have the following definition.

Definition 1: (i) The tag hierarchy is a part of semantic

concept model. (ii) Let t1, t2..., tk be the sequence of tags, with

their semantic concepts. (iii) The tag hierarchy consists of tag

clusters and related semantic concepts.

Definition 2: In order to implement tag clustering, it is

necessary to compute the similarity of tags. Given "sim (ti,

tj)" as the similarity value of tags and tag ti, tj are represented

by the vector , Thereinto, "sim (ti, tj)" is computed

by popular cosine similarity method [13]:

where wki is the weight of tag ti added to module mk.

The value of wki is defined by TF-IDF[13]:

where tfki stands for the frequency of tag ti added to module

mk, N is the total number of tag frequency in database, and n

is the number of modules where tag ti occurs at least one.

Fig. 4 describes an example of semantic concept model.

For example, concept Control Logic Error is related to tag

cluster Control Statement Error including if, for, and while

statement errors and concept Memory Management Error is

related to tag cluster Memory Statement Error including

Array Index, Allocation, and Free errors. Two concepts are

related to each other in the figure. Actually, these semantic

concepts explain different bugs of software program. By

using cosine similarity method to measure the similarity of

tags, tags are clustered and form the semantic concept model

[14].

Fig. 4. An example of semantic concept model.

D. Users’ Feedback

As described in the previous section, a feedback module is

used to allow users to rate appropriateness of software bug

report and provide the comments. Feedback is presented to

reflect users’ interests. It helps the system improve the

quality of retrieval.

User's feedback information includes the rating-score that

user gives the software bug, the average score of rated

software bug and the users' comments. Section V will

describe how to submit the feedback information.

V. CASE STUDY

In order to demonstrate the feasibility of the technique

based on semantic concept model, we prototyped a software

bug report retrieval system. Fig. 5 shows a screenshot of the

software bug retrieval in our system. The figure shows that a

developer enters a keyword "email management" and related

facet information. When the developer clicks search button to

search related bugs, our system recommends appropriate tags

and related semantic concepts. Actually, the semantic

concepts are bug types of the module. In order to implement

tag clustering algorithm and consider inserting further tags,

we set the similarity threshold (θ) to 0.85 in the experiment

[9].

Fig. 5. Process of software bugs retrieval.

As described in Section IV, Fig. 6 shows recommended

semantic concepts and modules. The developer can choose

any module and appropriate concept. In this example, the

developer chose a module "Mail Manage" and related

semantic concept "Data error" which is used to describe the

software bug types of "Mail Manage".

International Journal of Innovation, Management and Technology, Vol. 4, No. 3, June 2013

358

Fig. 6. Tag recommendation.

Fig. 7 shows a result list of software bugs when a

developer chooses related module and semantic concept.

Five bug reports have been ranked according to user score.

Each report includes information about the software bug

report, such as program name, type, language, etc. A

developer can choose any bug item to check the details of the

bug report.

Fig. 7. Result list of software bugs.

In Fig. 8, the detailed description of a software bug report

is displayed to a developer. The report shows the details of

Program "Yahoo Test". Among the details, "User Score"

stands for the average score of users' feedback and "Solution"

stands for the debugging method of this bug. In the software

bug report, a developer can give the feedback score from 1 to

5 and related comments to improve the quality of software

bug report retrieval.

Fig. 8. Software bug report.

VI. CONCLUSION

In this paper, we applied a semantic concept based

technique with feedback to retrieve software bug

in-formation. In this technique, developers can get better

result by entering a keyword and the facets. Developers

produce new software bug report and label it by adding a tag.

In order to improve the efficiency of software bug retrieval,

semantic concept model has been designed to remedy the

defects of keyword-based search. Furthermore, our technique

recommends related tags to developers and users.

In the future, we will study a re-rank algorithm to rank

related software bug reports. We think that the algorithm will

help further improve the quality of our retrieval system. In

addition, it is necessary to investigate more features of

software bugs to supplement the bug reports and extend the

set of semantic concepts.

REFERENCES

[1] E. J. Weyuker, R. M. Bell, and T. J. Ostrand, "We're Finding Most of
the Bugs, but What are We Miss-ing?" in Proc. International
Conference on Software Testing, pp. 313 - 322, 2010.

[2] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, "Source Code Retrieval
for Bug Localization Using Latent Dirichlet Allocation," in Proc.
Working Conference on Re-verse Engineering, pp. 155-164, 2008.

[3] V. Dallmeier and T. Zimmermann, "Extraction of Bug Localization
Benchmarks from History," in Proc. IEEE/ACM International
Conference on Automated Software Engineering, pp. 433 - 436, 2007.

[4] T. Zimmermann, N. Nagappan, and A. Zeller, "Predicting Bugs From
History," Software Evolution, Springer, 2008, ch. 4, pp. 69 - 88.

[5] A. Ankolekar, K. Sycara, J. Herbsleb, R. Kraut, and C. Welty,
"Supporting Online Problem-Solving Communities with the Semantic
Web," in Proc. International Conference on World Wide Web, pp. 575
- 584, 2006.

[6] P. Schuegerl, J. Rilling, and P. Charland, "Enriching SE ontologies
with bug report quality," in Proc. International Workshop on Semantic
Web Enabled Software Engineering, 2008.

[7] H. M. Tran, C. Lange, G. Chulkov, J. Schonwalder, and M. Kohlhase,
"Applying Semantic Techniques to Search and Analyze Bug Tracking
Data," Journal of Network and Systems Management, vol. 17, no. 3, pp.
285-308, 2009.

[8] M. Langer and M. Nerb, "Defining a trouble report format for the
seamless integration of problem management into customer service
management," in Proc. Workshop of the OpenView University
Association. 1999.

[9] H. J. Kim, S. J. Lee, B. J. Lee, and S. Y. Kang, "Build-ing Concept
Network-based User Profile for Per-sonalized Web Search," in Proc.
International Conference on Computer and Information Science, pp.
567 - 572, Aug. 2010.

[10] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme, "Information
Retrieval in Folksonomies: Search and Ranking," Lecture Notes in
Computer Science, vol. 401, pp. 411-426, 2006.

[11] H. M. Tran, G. Chulkov, and J. Schönwälder, "Crawling Bug Tracker
for Semantic Bug Search," Lecture Notes in Computer Science, vol.
5273, pp.55-68, 2008.

[12] S. Edwards, "The 3C Model of Reusable Software Components," in
Proc. Third Annual Workshop: Methods and Tools for Reuse, 1990.

[13] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval,
Addison Wesley, 1999.

[14] T. Zhang, B. Lee, H. Kim, and S. Kang, "Utilizing feedback based
Complementary Classification Techniques for Retrieval of Software
Require-ments," in Proc. Korea Conference on Software Engineering,
vol. 12, no. 1, pp. 419 - 425, 2010.

Tao Zhang received his B.S and M.E. degrees from
Northeastern University, China, in 2005 and 2008,
respectively. His research interests include software
maintenance and evolution, data mining, grid computing,
wireless network and so on. Current, he is a Ph.D.
candidate in Computer Science at the University of Seoul.
Now he is a graduate student member of IEEE and ACM.

Byungjeong Lee received his B.S., M.S., and Ph.D.

degrees in Computer Science from Seoul National

University, Korea, in 1990, 1998, and 2002,

respectively. He was a research member at the Software

Lab. of Hyundai Electronics Corp. from 1990 to 1998.

Currently, he is an associate professor of Computer

Science at the University of Seoul, Korea. His current

research interests include software engineering, software

evolution, and web engineering.

International Journal of Innovation, Management and Technology, Vol. 4, No. 3, June 2013

359

Hanjoon Kim received the B.S. and M.S. degrees in

Computer Science and Statistics from Seoul National

University, Seoul, Korea, in 1994 and 1996 and the Ph.D.

degree in Computer Science and Engineering from Seoul

National University, Seoul, Korea, in 2002, respectively.

He is currently an associate professor at the School of

Electrical and Computer Engineering, University of Seoul,

Korea. His current research interests include text mining,

machine learning, and intelligent information retrieval.

Jaeho Lee received the B.S. and the M.S. degrees in

Computer Science from Seoul National University,

Seoul, Korea, in 1985 and 1987, respectively and the

Ph.D. degree in Computer Science and Engineering from

the University of Michigan, Ann Arbor, Michigan, USA,

in 1997. He joined the faculty at the University of Seoul in

1998. His interests are in artificial intelligence, intelligent

service robots, and autonomous systems.

Sooyong Kang received his B.S. degree in mathematics

and the M.S. and Ph.D. degrees in Computer Science,

from Seoul National University, Seoul, Korea, in 1996,

1998, and 2002, respectively. He was then a Postdoctoral

researcher in the School of Computer Science and

Engineering, SNU. He is now with the Division of

Computer Science and Engineering, Hanyang

University, Seoul. His research interests include

Operating System, Multimedia System, Storage System, Flash Memories

and Next Generation Nonvolatile Memories.

Ilhoon Shin received the B.S., the M.S., and the Ph.D.

degrees in Computer Science and Engineering from

Seoul National University, Seoul Korea, in 1998, 2000,

and 2005, respectively. He is currently an assistant

professor of the Department of Electronics and

Information Engineering at Seoul National University of

Science & Technology. His research interests include

storage systems, embedded systems, and operating systems.

International Journal of Innovation, Management and Technology, Vol. 4, No. 3, June 2013

360

