



Abstract—A parallel computing system helps the user to

exploit the parallelism inherent in the job to ensure its execution

in the minimum time. This is done by distributing the job over

multiple processors available in the system. Scheduling a job on

such a system gains paramount importance and is always

desired from a scheduling policy. Efficient job execution

exploits the software parallelism in the job to map it with the

available parallel hardware. A batch scheduler schedules the

similar jobs by pooling them together and allocating them on

the appropriate processor. Batch scheduling is useful as it

allows the sharing of resources among many users and

programs. Further, it avoids the idling of resources thereby

increasing the utilization to a greater extent. A batch scheduler

ensures proper amalgamation of software parallelism with

hardware parallelism. This paper compares the performance of

three batch scheduling policies viz. First Come First Serve

(FCFS), Turnaround Based Scheduling Scheme (TBSS) and

Batch Scheduling Scheme (BS). Simulation study is performed

to analyze the performance of these three strategies under

various test conditions that involves varying the hardware and

software parallelism to observe the effect on the Turnaround

Time (TAT) for the batch of jobs.

Index Terms—Batch scheduling, JPDG, parallel computing,

turnaround time (TAT).

I. INTRODUCTION

The computer was introduced as a single processor

machine with limited capabilities and the aim of making the

computation faster. Computational aspect aims to have faster

machines that can complete the job in smallest possible time.

Computer systems have also evolved drastically over the

period of time. The system witnesses the introduction of

many features like hierarchical memory system, cache,

spooling, buffering, pipelining, context switching to name a

few to induce parallelism in the sequential machine. Newer

tools were developed resulting in improved software

applications too. A major objective of all these exercise was

to minimize the turnaround time of the job execution.

Eventually, this thirst for improvements led to

multiprocessor and multi computer machines

providing the parallel and distributed computing

environment to the job. This evolution has resulted in the

realization of today’s very efficient high end computing

environment in the form of cluster, grid and cloud

computing.

A job demanding execution may be considered as a group

Manuscript received September 21, 2012; revised November 12, 2012.

The authors are with the School of Computer and Systems Sciences,

Jawaharlal Nehru University, New Delhi - 110067, India (e-mail:

mdshahid.cs@ gmail.com, zahidraza75@gmail.com, dpv@mail.jnu.ac.in).

of sub-jobs (modules). A job is said to be highly parallel if the

degree of interaction between the various modules is low and

vice versa. The modular nature of the jobs helps in

representing it as a Job Precedence and Dependence Graph

(JPDG) which provides the information of the number of

modules in the job, the degree of parallelism and the degree

of interaction between the interactive modules.

Job scheduling schemes can be static or dynamic

depending on whether the requirement of scheduling is

offline (batch scheduling) or online. Online scheduling is

often employed when the job requires immediate scheduling

and the scheduler have no information about the job’s

requirements. Batch scheduler clubs together various similar

jobs and schedules them for execution with the single

objective of the turnaround minimization. The scheduling

policy for the batch can be decided easily based on the targets

as the requirements are known beforehand. In the case of

online scheduling the scheduler has no idea about the

incoming jobs and therefore the requirements are unknown

till the job actually reaches for execution.

On a uni-processor scheduling the objective is to decide

the way in which the CPU time slice will be given to the jobs

assigned to the processor. The popular scheduling schemes

are First Come First Serve (FCFS), Shortest Job First (SJF),

Round Robin (RR) etc. and is entirely the prerogative of the

Operating System. In the case of the multiprocessor machine,

scheduling helps in assigning the jobs to the appropriate node

to ensure the minimum turnaround time for the jobs

submitted. The appropriateness of the nodes depends on

various factors, considered for allocation,viz. the processing

speed of the node, number of jobs already assigned to the

node, reliability of the node or even a combination of some

objectives.

Scheduling a job on a parallel processing system is the

problem of assigning the given job comprising of sub-jobs on

the appropriate nodes mostly in order to minimize the job

execution time. Thus, it can be defined as the problem of

mapping the sub-jobs (modules) as per the JPDG to the

processor graph. A sample job scheduling problem is

illustrated in Fig. 1[1].

 m0

m1

m4

m3
m2

m5

mapping

 N0

N1

N4

N2

N5

Fig. 1. A sample job scheduling problem.

A Comparative Study of Batch Scheduling Strategies for

Parallel Computing System

Mohammad Shahid, Zahid Raza, and Deo PrakashVidyarthi

International Journal of Innovation, Management and Technology, Vol. 4, No. 1, February 2013

31DOI: 10.7763/IJIMT.2013.V4.351

A batch of jobs can be considered as a set of many jobs

with each job being represented as a Directed Acyclic Graph

(DAG) in the form of JPDG. Each job reflects the precedence

of the sub-jobs in the job and the degree of interaction

between them. Software parallelism in the job(s) is decided

by two factors viz. precedence levels between sub-jobs and

the number of sub-jobs at each precedence level. A job is said

to be highly parallel if the degree of interaction between the

sub-jobs is very low. The parallelism is further improved

with more number of sub-jobs available for execution at each

precedence level. Fig. 2 shows two single jobs comprising of

five sub-jobs in the states of low and high parallelism.

For a batch of jobs, parallelism can be viewed at either the

job level or at both the job level and the sub-jobs level in

accordance to the JPDG.The work has referred to the

sub-jobs as modules and has been used interchangeably.

Fig. 2. Jobs with low and high parallelism.

The extent to which the parallelism exhibited by the batch

can be exploited depends on the scheduling scheme which is

used to allocate these jobs (sub-jobs). If the scheduling

scheme is such that it views the parallelism in the batch only

at the job level, the requirements are confined only till

allocating the individual jobs on the appropriate resources.

The best scheduling strategy will be realized when the

parallelism is seen at the job level along with the in depth

parallelism offered by the sub-jobs of the jobs internally.

Thus, in this case, the scheduler should be capable of

identifying individual jobs and allocate the sub-jobs of the

job under consideration to appropriate nodes so as to exploit

the parallelism in the batch to its maximum.

The paper has been divided into five sections. Section II

reports some similar models. Section III highlights the FCFS,

TBSS and BS scheduling schemes used for comparison in

this work. Section IV presents the experimental study and

their analysis. The paper ends in Section V detailing the

conclusions drawn from the study.

II. RELATED WORK

A lot of work has been done to suggest and evaluate

scheduling models for parallel processing systems. Some

issues and approaches in the parallel job scheduling are

discussed in [2]. Another work presenting some recent

developments and challenges of parallel job scheduling

spanning various domains like workloads, requirement

characterization, resource management etc. has been

discussed in [3]. A survey of some approaches that have

proven influential with parallel systems has been presented in

[4]. A scheduling model for the parallel system by

monitoring the job's computation granularity and

communication pattern and then scheduling them has been

reported in [5]. Duplication of machines in the batch

scheduling environment to minimize the make span for the

parallel processing system is presented in [6]. Fuzzy systems

have found use in the work [7] for scheduling of the parallel

jobs based on process grain size. An online batch scheduling

model is also presented in [8] and [9]. Various approaches to

schedule a mixed batch with interactive loads finds place in

the literature in[10].

III. FCFS, TBSS AND BS

This paper extends the work presented in [11] to focus on

comparing the performance of First Come First Serve (FCFS)

and Turnaround Based Scheduling Scheme (TBSS) with the

batch scheduling scheme [12]. The various assumptions for

the study are listed below.

1) A batch of N jobs Jj (j=1 to N) may be submitted to the

system at any time with the batch having jobs of similar

nature.

2) Each job Jj is submitted in the preprocessed manner with

all the information about itself like the number of

modules Mij (i=1 to M) comprising the job, number of

instructions (Ii) in each module.

3) The clock frequency (fk) of each node is known to the

system.

4) The previous workload on the nodes (Tk) is periodically

updated in the system before scheduling each batch of

jobs.

5) The study has considered the sub-jobs of the jobs to be

non interactive i.e., there is no communication

requirement between them while executing. However, in

practice, the communication requirements may also play

a decisive role in scheduling the sub-jobs.

6) The jobs forming the batch are assumed to be non

interactive.

7) The queuing time for the batch is not considered while

calculating the turnaround time for the batch.

8) Comparison of the scheduling policies is based mainly

on how effectively they are able to minimize the

turnaround time of the batch.

Since, each job in the batch is considered to be in the form

of sub-jobs, the turnaround time calculation can be

considered at the lowest level i.e. the Turnaround Time

(TATki) offered by a node Pk to the sub-job (module) Mij. It

can be calculated as the sum of the processing time (Eijk) of

the module on the node under consideration and the workload

(Tk) corresponding to the previous modules allocated and

pending on that node. This is represented as

1

= (E +)
m

ki ijk ijk k

i

TAT X T


 
 
 


(1)

Here, Eijk Xijk represents the processing time of the node Pk

under consideration calculated for node Pk for module mi of

size Ii of job Jj as

Eijk= Ii (1/fk) + nα (2)

where xijk is the vector indicating the assignment of module

mi of job Jj on node Pk. It assumes a binary value. It is 1 if

International Journal of Innovation, Management and Technology, Vol. 4, No. 1, February 2013

32

the module is allocated to the node and is 0 otherwise. Tk is

the time to finish execution of the present modules on the

node Pk.

FCFS is the batch scheduling scheme which works on the

basis of scheduling the jobs in order of their arrival. Here the

parallelism is exhibited only till the job level with each job

being allocated to the node that has the minimum workload

(Tk) at that moment of time. Here, even if the sub-jobs of the

jobs can be executed parallel, the scheduler is incapable of

exploiting this feature. The FCFS algorithm is shown in the

box below.

TBSS is the scheduling strategy which exhibits parallelism

at the sub-job level. Here, the scheduler schedules the job by

scheduling each job module independently as suggested by

the JPDG of the job. A module is allocated to thenode which

offers the minimum turnaround time as per equation (1). The

process is repeated for the remaining modules of the job and

for all the remaining jobs. In this case, the allocation of

modules is done on those nodes which are the fastest with

least previous workload. Since the allocation is a result of

considering the node attributes the inherent parallelism in the

job is exploited resulting in an allocation pattern which may

not necessarily be on one node only in contrast to the FCFS

policy. The TBSS algorithm is explained as below.

The notable difference between FCFS and TBSS policies

is that in case of FCFS once a node is selected all the modules

(sub-jobs) of the job are allocated on that the node only. Thus,

irrespective of the presence of sub-jobs which can be

executed parallel, the sub-jobs get executed sequentially on

one node. In case of TBSS, although it considers the

parallelism at the sub-jobs level, the nature of the scheme

does not allow the next job in the batch to be executed till the

previous one has finished execution. Thus, the parallelism

exhibited by this scheme is only till the sub-jobs level.

BS strategy [12] is the scheduling scheme which considers

the parallelism both at the job level as well as the sub-job

level making it very suitable for batch mode of execution.

Here, the modules of the individual jobs of the batch are

partitioned into various levels as per the JPDG of the jobs.

Each level corresponds to the job modules from the

individual jobs of the batch which can run in parallel both at

the job level and at the sub-job level. Fig. 3 illustrates the

partitioning of a sample batch into various levels.

Fig. 3. Partitioning the batch into levels.

The BS scheduler schedules the job modules for the given

level by allocating each module at a given level on a node

using round robin strategy. The process starts from the first

module being allocated on the node with minimum previous

workload (Tk)and the following module allocated on the next

best node till the last module of that level. Thus, BS enables

us to allocate job modules of different jobs in parallel at the

job level and as well at the sub job level. Allocating modules

to nodes independently for each level ensures the proper load

balancing while exploiting the parallelism in the batch to its

maximum leading to the most efficient utilization of the

computational resources.

IV. EXPERIMENTAL STUDY

Experiments were carried out to compare the behavior of

the FCFS, TBSS and BS scheduling schemes by scheduling

the batch of varying size and degree of parallelism using

these schemes and analyzing them for the following cases:

Case I: Observing the TAT for the same batch of jobs with

more than one job by varying the number of nodes

constituting the system.

Case II: Observing the TAT by keeping the number of

nodes same but varying the batch size.

Case III: Observing the TAT of the batch by varying the

number of nodes and modules. Batch has only one job.

The algorithm for BS is presented in the box as follows.

TBSS

{

Submit the batch of jobs Ji (i=1to N) in the desired format

in order of their arrival // As per Section III

For each job (Jj)

 {

 For each module Mij (j=1to J)

 For each node Pk (k=1toK)

 Select the node with minimum Tk as per eq. (1)

 Assign the module to the selected node Pk

 Update Tk to reflect the inclusion of the new

 module

 }

Compare Tk of all the nodes on which allocation has

been made

 TAT for batch = Highest TK

 // For nodes on which allocation has been made

}

FCFS

{

Submit the batch of jobs Jj(i=1to N) in the desired

format in order of their arrival // As per Section III

Select the node Pk with minimum value of Tk

For each job (Jj)

 {

 For each module Mij

 {

 Assign the module to the selected node Pk

 Update Tk to reflect the inclusion of new job

 }

 }

Compare Tk of all the nodes on which allocation has

been made

TAT for batch = Highest TK

 // for nodes on which allocation has been made

}

International Journal of Innovation, Management and Technology, Vol. 4, No. 1, February 2013

33

The various parameters used in the study are listed in Table

I.
TABLE I: SYSTEM PARAMETERS

S. No. Parameter Notation Used Range

1 Number of Nodes PK 5-30

2 Clock Frequency of Nodes fk(MHz) 10-20

3
Time to finish Previous

Workload
Tk (µS) 20-100

4 Number of Jobs in the Batch Jj 3-25

5 Number of Modules in a Job Mij 10-50

6
Number of Instructions in a

Module
Ii 300-500

7 Number of Levels in the Jobs Li 1-5

In Case I, a batch of jobs was created along with a parallel

processing system. The same batch is then scheduled using

FCFS, TBSS and then BS strategy while varying the number

of nodes available for execution and observing the TAT.

Table II and Fig. 4 represents some of the results obtained.

The experiment was done on different data sets resulting in

jobs with reasonable parallelism at the sub-job level but the

result is along the same lines as shown in Fig. 4.

Observations:

1) It is observed, from Fig. 4, that the TAT of the batch for

FCFS, TBSS and BS gradually decreases with the

increase in the number of nodes. This is because of the

fact that with more nodes the chances of the exploitation

of the software parallelism inherent in the job increases.

2) Further, it can be observed that if the number of nodes

are very small, the difference in the TAT observed by the

three policies is not much owing to the limited hardware

parallelism which limits the software parallelism of the

scheduling policy

3) Since, BS considers the parallelism in the batch at both

the job and the sub-job level, it offers the best turnaround

time consistently. FCFS reports the worst performance

out of all policies which can be understood by the fact

that it considers the parallelism in the job only at the job

level. This results in losing the

parallelism at the sub-job level. TBSS performs better

than FCFS as it tries to allocate the sub-jobs to the best

nodes resulting in exploitation of the parallelism at the

sub-job level. However, the performance is not

comparable to BS as TBSS cannot indulge jobs as well

as the sub-jobs at the same time while scheduling the job.

4) It is seen that FCFS saturates fastest followed by TBSS

and BS as FCFS exhibits least software parallelism than

TBSS or BS. The fall in TAT observed in the case of BS

is steepest as more nodes gives it an opportunity to

allocate more modules which can be run in parallel at a

given level. Thus, more is the match between software

and hardware parallelism for BS, better is its

performance.

TABLE II: OBSERVATIONS FOR CASE I

Batch size 6

(Job

size=15-12)

No of Nodes FCFS TBSS BS

3 754.6875 747.5972 776.5625

5 590.3333 674.4920 600.0243

10 522.0909 419.1636 317.5101

15 481.0833 393.9368 245.5833

20 463.6429 355.6661 185.3053

25 452.0000 343.8477 174.4746

35 463.6429 323.7912 139.9097

50 438.3571 318.2184 121.1632

80 425.5000 309.7801 109.4132

100 481.8571 313.7111 104.9507

0 20 40 60 80 100
0

200

400

600

800

Numbre of Nodes

T
u

n
a

ro
u

n
d

 T
im

e
 (

u
S

)

FCFS

TBSS

BS

Fig. 4. Turnaround time v/s number of nodes.

BS

{

Submit the batch

 // Submit the batch comprising of jobs

Group the batch

 // Group together the job modules as per their levels

For l = 1 to Lmax

 // Lmax being highest precedence level among all jobs

do

{

 For i= 1 to N //for number of jobs

do {

 For i = 1 to M

// for the modules with precedence level 'l'

do {

 For k=1 to K

// for all the available nodes

do {

 Compute (CTijkL)

// Calculate CTijkL for the module under consideration /

CTijkL= Eijk. +Tk

}

Select Node & Assign Module

 // Assign the module on the node with minimum CTijkL //

Thus generate the Allocation Vector

Mark the Selected Node

// Mark the selected node as used so that no further

 // allocation will be made on this node till all the

 // other nodes have also got allotted one or the other

 // module} }

Compute NECkL for the selected nodes

// NECkL is the sum of execution cost of assigned

modules and ready time at node Pk of level L

Update Tk = max (NECkL)

// Tkl for the next level is equal to the maximum value

 // of NECkl of the current level

 }

Compute Turnaround Time (TAT)

 // TAT = max (NECkL) at the highest level

}

Batch Size=6

International Journal of Innovation, Management and Technology, Vol. 4, No. 1, February 2013

34

Table III and Fig. 5 represents the observations for Case II

in which the number of nodes in the system are kept constant

and the TAT is observed by varying the batch size submitted

for execution.

TABLE III: OBSERVATIONS FOR CASE II

No. of

Nodes=20

No. of

Modules in a

Job =15-10

Batch size FCFS TBSS BS

3 514.9091 200.3005 140.6327

5 532.6364 402.2040 210.5000

7 572.7273 434.6892 216.7719

12 595.0000 649.2888 319.6383

15 572.4000 729.7893 403.3187

23 605.9091 819.8765 549.0379

25 712.3434 890.9876 634.9812

0 5 10 15 20 25
0

200

400

600

800

1000

Batch Size (Number of Jobs)

T
u

rn
a

ro
u

d
 T

im
e

 (
u

S
)

FCFS

TBSS

BS

Fig. 5. Turnaround time v/s batch size.

Observations:

1) The TAT keeps on increasing when the batch size is

increased while keeping the number of nodes fixed for

all the scheduling schemes viz. FCFS, TBSS and BS

which is expected in such case.

2) Under any given condition, BS performs the best

followed by FCFS andTBSS. This is because of the

capability of BS to allocate sub-jobs of independent jobs

simultaneously resulting in the minimum TAT offered to

the job.

3) TBSS performs better when the batch size is small. But

the performance of TBSS gradually reduces as the batch

size grows. This is due to the fact that when the number

of nodes is limited, TBSS which primarily focuses on the

batch parallelism at the sub-job levelcannot exploit the

software parallelism at its best.

4) FCFS performs nearly the same as the batch size

increases as it schedules the batch while focusing only

on parallelism at the job level. Thus till the number of

jobs is less or equal to the number of nodes the

turnaround does not change substantially.

5) As the number of jobs increases, the difference in the

TAT reported by FCFS and BS gradually reduces. This

is due to the fact that for given number of nodes with

increasing batch size, more and more number of nodes

gets loaded with job. This results in effectively reducing

the mismatch between hardware and software

parallelism which otherwise is there in FCFS. Further, if

the job exhibits very low parallelism, FCFS may even

report better TAT than BS.

Table IV and Fig. 6 represents the results obtained from

Case III. The study of Case III was divided into two parts

referred to as case III(a) and Case III (b) respectively. In case

III (a), the TAT offered by FCFS, TBSS and BS was

observed while varying the number of nodes in the parallel

computing system for the same batch size of a single job

comprising of some modules. In Case III(b), the TAT is

observed while varying the number of modules in the batch

having a single job keeping the number of nodes same. The

results are summarized as Tables IV-V and represented in Fig.

6-7.

TABLE IV: OBSERVATIONS FOR CASE III (A).

Batch size =

1

(No. of

Modules in

the Job

=20-25)

No of

Nodes

FCFS TBSS BS

5 685.8000 238.8283 229.8616

10 550.3500 164.2692 142.2192

15 530.8421 137.7390 128.7164

20 531.8421 126.1895 116.1724

25 530.8421 120.2438 119.5965

30 525.8235 123.3588 118.2838

35 524.8235 113.3421 115.5559115.5559

40 526.3500 111.3421 113.5471

45 531.8421 116.5789 113.0079

50 533.8421 117.4691 115.0079

0 10 20 30 40 50
0

200

400

600

800

Number of Nodes

T
u

rn
a

ro
u

n
d

 T
im

e
 (

u
S

)

FCFS

TBSS

BS

Fig. 6. Turnaround Time v/s Number of Nodes with Batch Size=1.

Observations:

1) The TAT keeps on reducing with the increase in the

number of nodes. The fall is sharp for all the policies in

the very beginning because of the mismatch between

hardware and software parallelism getting reduced.

Afterwards, the rate of improvement becomes low.

2) TBSS and BS performs best and almost at par. The

reason for this could be attributed to the fact that BS

strategy starts resembling TBSS when the batch has only

one job thus both of them considering the job parallelism

at the sub-job level only.

3) FCFS performs worst as increasing the number of nodes

does not affect it much as it focuses on the parallelism at

the job level only. Thus, an increase in the number of

nodes makes the difference only at the early start to the

job with incapability of the scheme in exploiting the

parallelism at the sub-job level.

Batch Size=1

No. of Nodes =20

International Journal of Innovation, Management and Technology, Vol. 4, No. 1, February 2013

35

TABLE V: OBSERVATIONS FOR CASE III (B).

Batch

size= 1

No of

Nodes=15

(No. of

Modules in

the Job

=20-25)

No of

Modules

FCFS TBSS BS

5 151.5000 83.3125 81.4853

10 254.1765 110.0162 92.1353

15 340.4444 113.8824 99.8140

20 466.7222 126.2138 126.2138

25 535 134.1032 139.2848

30 726.8824 136.8281 129.5573

35 819.0556 171.2769 168.1573

45 928.9444 185.0259 183.9424

0 10 20 30 40 50
0

200

400

600

800

1000

Number of Modules

T
ur

na
ro

un
d

T
im

e
(u

S
)

FCFS

TBSS

BS

Fig. 7. Turnaround time v/s number of modules with batch size=1.

Observations:

1) The TAT offered by FCFS, TBSS and BS keeps on

increasing with the increase in the number of modules

for the batch of single job as expected.

2) In this case also BS and TBSS performs at par and

emerge as best policies with FCFS reporting the worst

results. Again, the reason of BS and TBSS performing

better is the same as reported earlier which is that both

consider parallelism at the sub-job level unlike FCFS.

Therefore, when a single job is there in a batch both BS

and TBSS behaves almost identical.

3) FCFS performs worst because an increase in the number

of modules adds substantially to the workload as it is

incapable of harnessing the parallelism at the sub-job

level which could have been run in parallel easily as is

the case with BS and TBSS.

4) The performance of BS gets a lead over TBSS with an

increase in the degree of parallelism in the job internally

as BS can allocate these sub-jobs much faster and in

parallel as compared to TBSS.

V. CONCLUSION

Batch scheduling is a useful exercise when we have similar

jobs to be executed as it results in an effective utilization of

the resources. The work compared the performance of three

scheduling schemes viz. First Come First Serve (FCFS),

Turnaround Based Scheduling Scheme (TBSS)and Batch

Scheduling (BS) for parallel computing system. FCFS

considers the scheduling by considering parallelism at only

the job level, TBSS considers it at the sub-job level and BS

considers it at both the job and the sub-job level. The

objective of the work was to observe the effect on the

system’s performance when there is a mismatch between

hardware parallelism and software parallelism and the three

scheduling policies mentioned above proves to be an ideal

candidate for the study. Simulation study was performed to

observe the TAT by varying the number of available nodes

(hardware parallelism) while keeping the batch size same and

varying the batch size and the degree of parallelism in the

jobs in the batch (software parallelism) for the same number

of nodes. The experiments were even extended to observe the

effect of the scheduling schemes on the TAT when the batch

contains only a single job. Simulation study reveals that the

BS strategy performs best in almost all conditions as it

provides the best match between mapping the software

parallelism in the application to the available hardware

parallelism.TBSS was observed to be performing well when

either the batch size is small or the batch has a single job

making it more suitable for smaller applications. FCFS

performed worst as it considers parallelism only at the job

level resulting in the inability to exploit the parallelism (if

any) at the sub-job level.

REFERENCES

[1] D. P. Vidyarthi, B. K. Sarker, A. K. Tripathi, and L. T. Yang,

Scheduling in Distributed Computing Systems, Springer, ISBN

978-0-387-74480-3, 2009.

[2] D. G. Fietelson and L. Rudolph, “Parallel job scheduling: issues and

approaches,” Lecture Notes in Computer Science, vol. 949/1995, pp.

1-18, 1995.

[3] E. Frachtenberg and U. Schwiegelshohn. New challenges of parallel

job scheduling. [Online]. Available:

http://www.cs.huji.ac.il/~etcs/pubs/papers/frachte.

[4] J. Weinberg. Job Scheduling on Parallel Systems. [Online]. Available:

http://cseweb.ucsd.edu/users/j1weinberg/#weinberg06researchExam.

[5] E. Frachtenberg, D. G. Fietelson, F. Petrini, and Fernandez, “Adaptive

parallel Job Scheduling with Flexible Co Scheduling,” IEEE

Transactions on Parallel and Distributed Systems, vol. 16, no. 11,

2005, pp. 1066-1077.

[6] Y. Zhang, C. Bai, and S. Wang, “Duplicating and its applications in

batch scheduling, lecture notes in operations research,” The Fifth

International Symposium on OR and Its Applications, pp. 108-117,

2005.

[7] S. V. Sudha and K. Thanushkodi, “Process grain sized based

scheduling of parallel jobs using genetic fuzzy systems,” International

Journal of Computer Theory and Engineering, vol. 2, no. 5, pp.

765-772, October 2010.

[8] H. Chen, Y. P. Zhang, and X. R. Yong, “On-line scheduling on a single

bounded batch processing machine with restarts,” First International

Workshop on Education Technology and Computer Science, DOI

10.1109/ETCS.2009. vol. 196, pp. 868-871, 2009.

[9] N. Gans and G. V. Ryzin, “Optimal dynamic scheduling of a general

class of parallel-processing queuing systems,” Advanced Applied

Probability, pp.1130-1156, 1998.

[10] I. Ashok and J. Zahorjan, “Scheduling a mixed interactive and batch

workloadon a parallel, shared memory supercomputer,” in Proceedings

of the ACM/IEEE Conference on Supercomputing, pp. 616-625, 1992.

[11] R. Zahid and V. D. Prakash, “A comparative study of FCFS and TBSS

scheduling strategies for parallel computing system,” Second

International Conference on Information and Multimedia Technology

(ICIMT'10), Hong Kong, China, December, 2010.

[12] R. Zahid and S. Mohammad, “A batch scheduling strategy for

computational grid,” Second International Conference on Meta

Computing (ICoMeC'11), Goa, December 15-16, 2011, pp. 52-57.

Batch Size=1

International Journal of Innovation, Management and Technology, Vol. 4, No. 1, February 2013

36

Mohammad Shahid is a Ph. D. scholar at the

School of Computer and Systems Sciences,

Jawaharlal Nehru University, New Delhi. He holds

Masters degree in Computer Science and

Applications from Aligarh Muslim University and

M. Tech. Degree in Computer Science and

Technology from JNU.

Zahid Raza is currently an Assistant Professor in

the School of Computer and Systems

Sciences,Jawaharlal Nehru University, India. He has

a Master degree in Electronics, Masters degree in

Computer Science and Ph.D. in Computer. Prior to

joining JNU, he served as a Lecturer in Banasthali

Vidyapith University, Rajasthan, India. His research

interest is in the area of Grid Computing He is a

member of IEEE.

Deo Prakash Vidyarthi received Master Degree in

Computer Application from MMM Engineering

College Gorakhpur and PhD in Computer Science

from Jabalpur University (work done in Banaras

Hindu University, Varanasi). He was associated

with the Department of Computer Science of

Banaras Hindu University, Varanasi for more than

12 years. Joined JNU in 2004 and currently working

as Associate Professor in the School of Computer &

Systems Sciences, Jawaharlal Nehru University,

New Delhi. Dr. Vidyarthi has published around 50 research papers in various

peer reviewed International Journals and Transactions (including IEEE,

Elsevier, Springer, World Scientific, IGI, Inderscience etc.) and around 25

research papers in the proceedings of peer-reviewed International

conferences in India and abroad. He has authored a book (Research

Monograph) entitled “Scheduling in Distributed Computing Systems:

Design, Analysis and Models” published by Springer, USA released in

December, 2008. Dr. Vidyarthi is also editor of a book on “Future internet

Design” published by IGI-Global released in February, 2012. He has

contributed chapters in many edited books. He is in the editorial board of two

International Journals and in the reviewer’s panel of many International

Journals. Dr. Vidyarthi is member of IEEE, International Society of Research

in Science and Technology (ISRST), USA and senior member of the

International Association of Computer Science and Information Technology

(IACSIT), Singapore. Research interest includes Parallel and Distributed

System, Grid Computing, Mobile Computing.

International Journal of Innovation, Management and Technology, Vol. 4, No. 1, February 2013

37

