

Abstract—Web services are useless if they cannot be

discovered. So, discovery is the most important task in the Web
service model.Recent researchers have focused on performing
semantic matching to enhance the accuracy of Web service
discovery.In this paper we present a framework for Web
services discovery and selection based on intelligent software
agents, OWL-S and domain ontologies. With the help of
software agents, information provided by Web services can be
made more efficient and more dynamic.With semantics
provided by OWL-S and domain concepts, match and discovery
engine can return the most relevant services.

Index Terms—web service discovery, QoS, agents, ontologies.

I. INTRODUCTION
Service-oriented computing (SOC) is an interdisciplinary

paradigm that revolutionizes the very fabric of distributed
software development Applications that adopt
service-oriented architectures (SOA) can evolve during their
lifespan and adapt to changing or unpredictable environments
more easily [1]. SOA is built around the concept of Web
Services. Web Services are new forms of Internet software
which can be invoked using standard Internet protocols. Web
Services, as it is defined by the World Wide Web Consortium
(W3C), is a software system designed to support
interoperable machine-to-machine interaction over a network.
Web services interact with each other, fulfilling tasks and
requests that, in turn, carry out parts of complex transactions
or workflows.

With the rapid development of web services technologies,
discovering web services is becoming the most urgent
problem to be resolved [2]. Discovery is the process of
finding Web services Provider locations which satisfy
specific requirements. Web services are useless if they cannot
be discovered. So, discovery is the most important task in the
Web service model [3]. There are two challenges facing the
practicality of Web services discovery [4]: (a) efficient
location of the Web service registries that contain the
requested Web services and (b) efficient retrieval of the
requested services from these registries with high quality of
service (QoS). With ever increasing number of available web
services it is problematic to find a service with required
functionality and appropriate quality characteristics [5]. The
main reason for this problem is that current web services

Manuscript received May 1, 2012; revised June 19, 2012.
R. Benaboud is with the Department of Mathematicsand Computer

Science, University of Tebessa, Tebessa 12000, Algeria (e-mail:
r_benaboud@ yahoo.fr).

R. Maamri and Z. Sahnoun are with LIRE Laboratory, Mentouri
University ofConstantine, Ain ElBey 25000, Algeria(e-mail:
rmaamri@yahoo.fr; sahnounz@yahoo.fr)

technology is not semantic-oriented. Several approaches
have been proposed to add semantics to Web Services
descriptions to facilitate discovery and selection of relevant
Web services (e.g. DAML-S [6], WSDL-S [7], WSML [8],
OWL-S [9]). These so-called Semantic Web services can
better capture and disambiguate the service functionality,
allowing a logic-based matchmaking to infer relationships
between requested and provided service parameters [10].
Recently, we have seen an explosion of interest in ontologies
as artefacts to represent human knowledge and as a critical
component in several applications; among these the web
services [11]. Ontologies have been developed to provide a
machine-processable semantics of information sources that
can be communicated between different applications. They
are also essential to the development and use of intelligent
systems, particularly for the interoperation of heterogeneous
systems. Ontologies are, thus, responsible for informing
about the domain vocabulary and explaining the meaning that
interacting systems attribute to terms [12]. In our work, we
propose the use of ontologies to describe semantically the
various parameters and characteristic of the customer request
and the Web services.

Even the use of ontologies, machines or programs is still
not efficient enough to take the automatic and dynamic
decision for semantic Web service discovery. With the help
of software agents, information provided by Web services
can be made more efficient and more dynamic. Actually
agents are intelligent enough to take the decision according to
the changing environment and changing level of available
information which cannot be expected from the traditional
system[13]. Our work takes the multi-agent approach in
which a team of agents, each with local information,
collaborates to satisfy Web services discovery objective. The
overall behavior of the system emerges through the dynamic
interactions between agents.

If the discovery engine returned multiple candidate Web
services provide the same functionality, then Quality of
Service (QoS) is becoming an important criterion for
selection of the best available Web service. The consumers
have to pay enough attention to find the service provider who
can satisfy their QoS requirements. If they cannot find a
provider satisfying all their QoS requirements, they usually
have to give up all the candidates or make some tradeoff [14].
Our work aims to provide a more “consumer-centric”
approach simplifying service discovery using semantics
while satisfying QoS requirements. A major problem in using
QoS for service discovery is the specification and storage of
the QoS information [15]. In this paper, we propose an
ontology-based OWL-S extension to adding QoS to Web
service descriptions.

Service consumers have different preferences. For

Semantic Web Service Discovery Based on Agents and
Ontologies

Rohallah Benaboud, Ramdane Maamri, and Zaïdi Sahnoun

International Journal of Innovation, Management and Technology, Vol. 3, No. 4, August 2012

467

example, a service consumer may want a service that offers
the fastest response time while for another execution price
could be his most important parameter. For this reason, we
propose that service consumer gives different weights for
different QoS attributes when he formulates his request.

The rest of this paper is organized as follows: In section 2,
we outline related research, Section 3 presents our framework.
In Section 4, we present request and service description.
Section 5 describes how to calculate the degree of similarity
between request and Web servicesand section 6 offers
concluding remarks and future directions.

II. RELATED WORK
The problems pertaining to Web service discovery have

long been taking attention of both academia and industry.
Many researches have investigated the discovery of semantic
web services, QoS-aware discovery or the use of agents for
semantic web services discovery. We provide an overview of
some of this work as a context for the research discussed in
the remainder of the paper.

A. Semantic Web Services Discovery
Most current approaches for web service discovery cater to

semantic web services, i.e., web services that have associated
semantic descriptions. The work presented in [16] proposes a
DAML-S matchmaking algorithm which is used to match a
requested service with a set of advertised ones. This matching
algorithm compares the input and output concepts of user
request to the service description in registry and defines four
levels of matching: Exact, Plug in, Subsumes, Fail. In our
work, we don’t use only the subsumption relationships
between concepts to calculate their similarity but we also take
into account common properties between them.

Reference [17] presents an approach for web service
discovery that combines semantic and statistical association
metrics. Semantic metrics are based on the semantic aspects
of relevant ontology. Statistical association metrics are based
on the association aspects of web services instances (their
inputs and outputs). The proposed approach exploits
semantic relationship ranking for establishing semantic
relevance, and a hyperclique pattern discovery method for
grouping web service parameters into meaningful
associations. These associations combined by the semantic
relevance are then leveraged to discover and rank web
services.

B. QoS and Web Services Discovery
The QoS requirements for Web Services have become

vital for both service providers and consumers as several
Web Services offers similar functionality [18].

Kokash [19] proposes a QoS-aware discovery and
subscription approach. The core idea of this approach is to
build up a “virtual service” grouping function similar
services together (called service pool) and dispatching
customer requests to the proper service in terms of QoS
requirements. After investigating the structure and the
underlying semantic similarity of Web services, it employs a
similarity matching algorithm to cluster the function-similar
services and generate a virtual WSDL so that the service pool
can be accessed as a Web service. Assuming consumers’ QoS

requirements are compliant with Web Service Quality Model
(WSQM) [20], it designs algorithms to automatically finish
the QoS negotiation between consumers and providers.
However, using traditional standards such as UDDI and
WSDL in this approach is insufficient, since the underlying
semantics of Web services are not exploited enough. Also,
the user requirements are not described explicitly and
consistently.

The work described in [21] refers to the need for an
extensible QoS model that contains domain-specific QoS
criteria. It sustains that QoS must be represented to users
according to user preferences and users should express
accurately their preferences with this QoS model without
resorting to complex coding of user profiles. It also suggests
that QoS computation must be fair and open for providers and
requesters. Then it proposes an extensible QoS model.

C. Agents and Web Services Discovery
Towards incorporating Web Service into agents has been

the subject of many research projects. Reference [22]
presents an agent based method for Web service selection,
from the information that is given in the WSDL file by the
Web service provider. Data mining is done on those data that
are collected from WSDL files and feedback taken from the
Web service users, by the agent to discover some interesting
patterns for further users of the Web service. The author of
this work doesn’t provide the details of the matching
mechanism and his impact on service selection.

In [23], Zhang et al. propose a multiagent approach for a
distributed information retrieval task. In their work, each
agent has a view of its environment called agent view. The
agent-view structure of an agent contains information about
the language models of documents owned by each agent. An
agent-view reorganization algorithm is run to dynamically
reorganize the underlying agent-view topology. Zhang et
al.’s protocol does not use ontologies during information
retrieval.

III. AGENT-BASED FRAMEWORK FOR SERVICE DISCOVERY
Our proposed framework has two types of agents are

devised namely, Consumer Agent and Provider Agent (Fig.
1). Like in [24], we use a central base of OWL Ontologies as
a reference to develop the various local ontologies and
semantic descriptions of the different Web services. Each
Provider Agent implements a number of Web services
described semantically with OWL-S enhanced with QoS
attributes.The central ontologies base contains the different
concepts used in diverse fields of proposed Web services and
will be consulted periodically by Provider Agents to develop
or enrich local ontologies.

When a service consumer wants to insert his request, An
Ontology-Guided Interface is offered by the Consumer Agent.
In order to input the request, service consumer must select the
desired terms they want to use in his request from the list of
terms provided by the interface in a pop-up. This list of terms
is generated by Provider Agents using terms in local
ontologies andsent to the Consumer Agent.

When receiving the request from Consumer Agent, each
Provider Agent matches the request to the services in the
Register Depository using OWL-S description and OWL

International Journal of Innovation, Management and Technology, Vol. 3, No. 4, August 2012

468

local ontologies. Then, Provider Agent returns to Consumer
Agent a set of candidate services.

When receiving all responses from Provider Agents, the
Consumer Agent sorts all candidate services according to the
degree of functional similarityand the QoS score. Then, it
returns to the service consumer the services that have the
highest overall score.

IV. REQUEST AND WEB SERVICE DESCRIPTION
Request description includes functional and

non-functional requirements. The former describes the
functional characteristic of the service demand, such as name,
textual description, inputs and outputs. The latter mainly
focuses on the customer’s preferences, namely quality of
service (QoS). In our work, service consumer doesn’t have to
give the value of each desired QoS attribute but he should get
the means to specify that a QoS attribute is more important
than another one. Indeed, he gives a weight for each QoS
attribute. Weights range from 1 to 5 where higher weights
represent greater importance.Fig. 2 shows an example of a
user request interface with weights of some QoS attributes.

Typically, Web services are described using functional and
non-functional properties. Functional properties contain
Service Name, Textual description, a set of Inputs and a set of
Outputs. Non-functional properties represent the description
of the service characteristics (e.g. QoS).We use OWL-S
service profile as a model for semantic matchmaking of
service descriptions. However, OWL-S mainly focuses on
describing functional aspects of a Web service. Based on
works presented in [25] [26], we propose an ontology-based
OWL-S extension to adding non-functional description,
referring to as QoS, to Web service description. In OWL-S
service profile we can use a set of ServiceParameter which
has name “serviceParameterName” and a value “sParameter”
(Fig. 3). For the connection of OWL-S and QoS ontology, the
QoSProperty is a subclass of OWL-S ServiceParameter. And
QoSParameterName and qosParameter are subproperties of
OWL-S ServiceParmaerterName and sParameter property.

V. DEGREE OF SIMILARITY BETWEEN REQUEST AND WEB
SERVICES

In this section we present our matching mechanism, which
evaluates the similarity between request and Web service

advertisements. This is done using functional match and the
calculation of QoS score.

A. Functional Match
In this discovery step, name and textual description of

request and services are matched using syntactic similarity
function whereas inputs and outputs are matched based on
conceptual similarity function.

1) Syntactic Similarity
Syntactic similarity function between a request R and a

service S is calculated using the equation bellow:
SyntacticSim(R,S)=
.ࡾሺࡿࢉ࢚ࢉࢇ࢚࢟ࡿ .ࡿ ,ࢋࢇࡺ ሻࢋࢇࡺ .ࡾሺࡿࢉ࢚ࢉࢇ࢚࢟ࡿ .ࡿ ,࢚࢘ࢉ࢙ࢋࡰ࢚࢞ࢋࢀ ሻ࢚࢘ࢉ࢙ࢋࡰ࢚࢞ࢋࢀ

To calculate the syntactic similarity of tow strings, we use

the algorithm 1, where the function Subset(String) takes as
input a string and devises it into sequences of three characters.
The function card(L) returns the number of elements in the
set L. In line 4, we normalize the SyntacticSim value to have
a value in the range of 0 to 1.

Algorithm 1SyntacticSim(String1, String2)
L1, L2, L3: sets of string;
Begin
1: L1 = Subset(String1);
2: L2 = Subset(String2);

3: L3 = L1 ∩L2;

4: SyntacticSim = ଶכୡୟ୰ୢሺLଷሻ
ୡୟ୰ୢሺLଵሻ ା ୡୟ୰ୢሺLଶሻ

 ;

5: returnSyntacticSim;
End

<rdf:RDFxml:base="http://www.daml.org/services/owl-s/1.1/Profile.owl>
………………………………………………………………………………………….
<profile:serviceName>Universities_Service</profile:serviceName>
<profile:textDescription>
 This service provide Information about universities and students……………….
</profile:textDescription>
………………………………………………………………………………………….
<profile:serviceParameter> ……………………..
<profile:serviceParameterName> …………………….</profile:serviceParameterName>

<profile:sParameterrdf:resource="………”>
</profile:serviceParameter>
………………………………………………………………………………………….
<profile:hasInputrdf:resource=""/>
………………………………………………………………………………………….
<profile:hasOutputrdf:resource=""/>
………………………………………………………………………………………….
</rdf:RDF>

International Journal of Innovation, Management and Technology, Vol. 3, No. 4, August 2012

469

Fig. 1. Agent-based framework for WS discovery.

Fig. 2. Consumer request interface.

Fig. 3. OWL-S profile example.

For example, to calculate
SyntacticSim(“FindAlgUniversity”,“FindAlgerianUnivers

ity”):

L1={fin, ind, nda, dal, alg, lgu, gun, uni, niv, ive, ver, ers,
rsi, sit, ity}.

L2= { fin, ind, nda, dal, alg, lge, ger, eri, ria, ian, anu, nun,
uni, niv, ive, ver, ers, rsi, sit, ity}.

L3 = { fin, ind, nda, dal, alg, uni, niv, ive, ver, ers, rsi, sit,
ity}.

SyntacticSim = ଶכଵଷ
ଵହାଶ

 = 0,743.
2) Conceptual Similarity

An output in the request must not be consider as similar to
a more generic output in the advertised service, while a
request input could be consider as similar to a more generic
advertised input [27]. We think also that an input in the
advertised service must not be consider as similar to a more
generic input in the request, while an output in the advertised
service could be consider as similar to a more generic output
in the request.

Fig. 4. Part of sample AL ontology.

ConceptSim(A, B) function matches a concept A(A ∈

request inputs or outputs) against a concept B (B∈ service
inputs or outputs) and returns the conceptual similarity of the
two concepts. For illustration, let us take the example shown
in Fig.5. All inputs and outputs refer to concepts of domain
ontology, an example portion of which is shown in Fig.4in a
logic description notions. The function nbprop(A) denotes
the number of properties of the concept A.To calculate the
ConceptSim(A,B) function, we distinguish several scenarios:

Case 01: if(A and B are same or they declared as

equivalent classes) thenConceptSim(A,B)= 1;
Example: ConceptSim(University, University) = 1.

Case 02:if(A and B are inputs and A is subclass of the
concept B directly or indirectly) then

ConceptSim(A,B)= 1;
Example: Fig 5(a): ConceptSim(PhdStudent, Person) = 1.
Case 03:if(A and B are Outputs and A is subclass of the

concept B directly or indirectly) then
ConceptSim(A,B)= ୬ୠ୮୰୭୮ሺBሻ

୬ୠ୮୰୭୮ሺAሻ
 ;

Example: Fig.5(a): ConceptSim(AlgUniversity,
University) = 0,80.

Case 04:if(A and B are outputs and B is subclass of the
concept A directly or indirectly) then

ConceptSim(A,B)= 1;
Example: Fig.5(b): ConceptSim(University,

AlgUniversity) = 1.
Case 05:if(A and B are inputs and B is subclass of the

concept A directly or indirectly) then
ConceptSim(A,B) = ୬ୠ୮୰୭୮ሺAሻ

୬ୠ୮୰୭୮ሺBሻ
 ;

Example: Fig.5(b): ConceptSim(Person, PhdStudent) =
0,60.

Case 06:if(A does not have a parent/child relationship with
B, but both concepts have a parent concept C in common)
then

ConceptSim(A,B)=୬ୠ୮୰୭୮ሺA∩Bሻ
୬ୠ୮୰୭୮ሺA∪Bሻ

 ;

Example: ConceptSim(PhdStudent, Employer) = 0,5.
Case 07:if(otherwise) thenConceptSim(A,B) = 0;
 Example: ConceptSim(Person, University) = 0.

Fig. 5.Example of request and web service.

Algorithm 2performs an inputs matching.Where R.Inputs

and S.Inputs denote the set of inputs in the request R and the
set of inputs in the service S respectively, Card(E) denotes the
cardinality of the set E, Sort(A) allows to sort the elements of
the array A in descending order. In lines 1,2, 3 and 4, the
algorithm matches each request input against all Web service
inputs, and keeps the best mapping for each request input. If
the number of request inputs is less than the number of
service inputs, then we have a miss of information;
thereforeInputsSim value is decreased (line 10).

The outputs similarity, given by OutputsSimfunction, is
also calculated in the same way as inputs similarity. But when
the number of service outputs is less than the number of
request outputs, the value of OutputsSim is decreased.
Therefore we inverse line 10 with 12 and perform changes in
variable names in the algorithm 2.

University ≡ Institution ∩(∀hasID.UniversityID) ∩ (=1hasID)
∩(∀hasName.Name) ∩(=1hasName) ∩
(∀hasPostcode.Postcode) ∩ (=1hasPostcode) ∩
(∀hasCourse.Course) ∩ (=1hasCourse)

AlgUniversity≡ University ∩(∀hasPostcode.AlgPostcode) ∩
(=1hasPostcode)

Person ≡ (∀hasAdress.Adress) ∩ (≥1hasAdress) ∩
(∀hasFirstName.Name) ∩
(=1hasFirstName)∩(∀hasLastName.Name)
∩(=1hasLastName)

Employer ≡ Person ∩ (∀hasEmployerID.EmployerID) ∩
(=1hasEmployerID)

Student ≡ Person ∩ (∀hasStudentID.StudentID) ∩
(=1hasStudentID)

PhdStudent≡ Student ∩ (∀hasThesisID.ThesisID) ∩
(=1hasThesisID)

GeographicArea≡ (∀hasGoName.Name) ∩ (=1 hasGoName)
∩ (∀hasCountryName.Name)∩
(=1 hasCountryName)

Location ≡GeographicArea∩ (∀hasAltitude. Altitude) ∩
(=1 hasAltitude) ∩ (∀hasLatitude. Latitude) ∩

(=1 hasLatitude) ∩ (∀hasLongitude. Longitude) ∩
(=1 hasLongitude)

International Journal of Innovation, Management and Technology, Vol. 3, No. 4, August 2012

470

Algorithm 2InputsSim(R.Inputs, S.Inputs)

InSim: array of float;
Begin
1: foreach e1 in R.Inputsdo
2: foreach e2 in S.Inputsdo
3: InSimi =Max(InSimi ,ConceptSim(e1, e2));
4: end for
5: i = i + 1;
6: end for
7: Sort(InSim);
8: m = Card(R.Inputs) – Card(S.Inputs);
9: if m<0 then

10: InputsSim =
∑ ூௌ

ೌೝሺೃ.ೠೞሻ
ೕసభ

ௗሺோ.ூ௨௧௦ሻ
/ሺ|݉| 1ሻ

11: else

12: InputsSim =
∑ ூௌ

ೌೝሺೄ.ೠೞሻ
ೕసభ

ௗሺௌ.ூ௨௧௦ሻ

13: end if
14: returnInputsSim
End

Let us calculate the Inputs and Outputs similarity between

request and service shown in Fig5(a).
InputsSim = ConceptSim(PhdStudent, Person) = 1.

OutputsSim=
ConceptSimሺLocation, Locationሻ ConceptSimሺAlgUniversity, Universityሻ

2

= ଵା,଼
ଶ

 = 0,9.
InputsOutputs similarity is calculated based on InputsSim

and OutputsSim functions as follows:

,ሺܴ݉݅ܵݏݐݑݐݑܱݏݐݑ݊ܫ ܵሻ=

Functional similarity can be calculated using the equation

bellow. Where weights w1 and w2 are real values between 0
and 1 and must sum to 1; they indicate the degree of
confidence that the service consumer has in the syntactic
similarity and inputs and outputs similarity.

,ሺܴ݈݉݅ܵܽ݊݅ݐܿ݊ݑܨ ܵሻ ൌ 1ݓ כ ,ሺܴ݉݅ܵܿ݅ݐܿܽݐ݊ݕܵ ܵሻ
2ݓ כ ,ሺܴ݉݅ܵݏݐݑݐݑܱݏݐݑ݊ܫ ܵሻ

B. QoS Score
Each QoS value needs to be normalized to have a value in

the range of 0 to 1. A QoS attribute can be monotonically
increasing or decreasing. A monotonically increasing QoS
attribute means increases in the value reflects improvements
in the quality (ex. Reliability), while monotonically
decreasing means decreases in the value reflects
improvements in the quality (ex. Execution Price and
Response Time). Monotonically increasing QoS attribute are
normalized by Equations (1) and monotonically decreasing
QoS attribute are normalized by Equations (2). In addition,
qos.max value and qos.min value show the maximum and
minimum value of the QoS attribute between all candidate
services.

NoramizedValue(qos)=

ቊ
1 െ ௦.୫ୟ୶ ି ௦

௦.୫ୟ୶ ି ௦.
݂݅ሺݏݍ. max ് .ݏݍ min ሻ

1 ݂݅ሺݏݍ. max ൌ .ݏݍ min ሻ
 (1)

ቐ1 െ
ݏݍ െ .ݏݍ ݉݅݊

.ݏݍ max െ ݏݍ. ݉݅݊
݂݅ሺݏݍ. max ് .ݏݍ min ሻ

1 ݂݅ሺݏݍ. max ൌ .ݏݍ min ሻ
 ሺ2ሻ

To calculate the overall QoS score of the service S, each
normalized QoSattribute, qos is multiplied the corresponding
weight, w, given by a service consumer as shown by
Equation bellow:

ሺܵሻ݁ݎܿܵܵܳ ൌ
∑ ݏݍ כ ݓ

∑ ݓ

VI. SUMMARIES
Web service discovery is a hot topic in past a few years.

Seeking the right service based on user’s search criteria in
which the user may be interested is still a problem[28]. This
paper has introduced a framework for Web services
discovery based on intelligent software agents and ontologies.
An advanced feature of our framework is that we perform the
service discovery, selection and ranking based on the
matching level of service advertisements to user requests
both in terms of functionality and QoS. With the use of agents,
information provided by Web services can be made more
efficient and more dynamic. With the use of OWL-S and
domain ontologies, match and discovery engine can return
the most relevant services.

To implement our framework, we have used JADE
platform [29]. JADE is a very powerful middleware
framework built with Java to design a MultiAgent Systems
based architecture. Consumer Agent and different Provider
Agents are created with JADE and inherent “Agent” JADE
class. Each agent has a “match module” which is realized
using Jena APIs which provides plenty of methods to access
ontology files. Registers Depository of our system are stored
in Oracle 10g.

In our future research, we will have to incorporate the Web
services composition into our proposed framework, by doing
that, we hope that our based agent framework can be further
improved and become more practical in real-world
applications.

REFERENCES
[1] M. Junghans, S. Agarwal, and R. Studer, “Towards practical semantic

web service discovery,” In Proc. the 7th International Conference on
The Semantic, pp. 15-29, 2010.

[2] Ye. L and B. Zhang. “Discovering web services based on functional
semantics,” In Proc. the 2006 IEEE Asia-Pacific Conf. on Services
Computing, pp. 348-355, 2006.

[3] V. Sharma and M. Kumar, “Web service discovery research: A study
of existing approaches,” Int. Journal on Recent Trends in Engineering
and Technology, vol. 1, pp.106-109, 2011.

[4] H. Wang, Y. Zhang, and R. Sunderraman, “Extensible soft semantic
web services agent,” Soft Comput, vol. 10, pp. 1021–1029 ,November
2005.

[5] N. Kokash, A. Birukou, and V. D'Andrea, “Web service discovery
based on past user experience,” In Proc. the 10th international
conference on Business information systems, pp. 95-107, 2007.

[6] A. Ankolekar et al, “DAML-S: Web service description for the
semantic web,” In Proc. 1st International Semantic Web Conf., Italy,
pp. 348-363, 2002.

[7] W3C, Web Services Semantics -- WSDL-S. [Online]. Available:
http://www.w3.org/Submission/WSDL-S/

[8] J. de Bruijn, Holger Lausen, A. Polleres, and D. Fensel, “The web
service modeling language WSML: An overview,”In Proc. 3rd
European Semantic Web Conf., Budva, Montenegro, pp. 590-604,
2006.

International Journal of Innovation, Management and Technology, Vol. 3, No. 4, August 2012

471

[9] D. Martin et al, “Bringing semantics to web services: The OWL-S
approach,”In Proc. of 1st International Workshop on Semantic Web
Services and Web Process Composition conf., USA, pp. 26-42, 2004.

[10] A. Averbakh, D. Krause, and D. Skoutas, “Exploiting user feedback to
improve semantic web service discovery,” In Proc. 8th International
Semantic Web Conf., pp. 33-48, 2009.

[11] B. Benatallah, M. Hacid, A. Leger, C. Rey, and F. Toumani, “On
automating web services discovery,” The International Journal on
Very Large Data Bases, vol. 14, pp. 84 – 96, March 2005.

[12] A. Malucelli, “Ontology-based services for agents interoperability,”
Phd thesis. University of Porto. 2006.

[13] U. Marjit, A. Sarkar, S. Santra, and U. Biswas, “A goal driven
framework for service discovery in service-oriented architecture: A
multiagent based approach,” International Journal of Computer and
Communication Technology, vol. 1, pp. 251-256, August 2010.

[14] X. Liu, L. Zhou, G. Huang, and H. Mei, “Consumer-centric web
services discovery and subscription,” In Proc. the IEEE International
Conference on e-Business Engineering, Hong Kong, pp. 24-26, 2007.

[15] Z. Xu, P. Martin, W. Powley, and F, Zulkernine, “Reputation-enhanced
QoS-based web service discovery,” In Proc. the International
Conference on Web Services, pp. 249- 256, 2007.

[16] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, “Semantic
matching of web services capabilities,” In Proc. the 1st International
Semantic Web Conf., pp. 333-347, 2002.

[17] A.V. Paliwal, N. R. Adam, H. Xiong, and C. Bornhovd, “Web service
discovery via semantic association ranking and hyperclique pattern
discovery,” In Proc. the 2006 IEEE/WIC/ACM International Conf. on
Web Intelligence, pp. 649-652, 2006.

[18] T. Rajendran and P. Balasubramanie, “An efficient multi-agent-based
architecture for web service registration and discovery with
QoS,”European Journal of Scientific Research, vol. 3, pp.421-432,
2011.

[19] N. Kokash, “Engineering service-oriented systems: Modeling,
discovery and quality,” Phd thesis, International Doctorate School in
Information and Communication Technologies, DIT - University of
Trento, February 2008.

[20] OASIS: Web Services Quality Model (WSQM) TC. [Online].
Available:
http://www.webkorea.or.kr/pds/data/pds1/WSQMver-0.3_200509091
43621.doc

[21] Y. Liu, A. H. H. Ngu, and L. Zeng, “Qos computation and policing in
dynamic web service selection,” In Proc. the 13th international World
Wide Web conf. on Alternate track Papers and Posters, New York , pp.
66-73, 2004.

[22] S. Susila, “Agent based discovery of web service to enhance the quality
of web service selection,” IJCSNS International Journal of Computer
Science and Network Security, vol. 2, pp. 159-163, 2011.

[23] H. Zhang, W.B. Croft, B. Levine, and V. Lesser, “A multi-agent
approach for peer-to-peer based information retrieval system,” In Proc.
Third Int’l Joint Conf. Autonomous Agents and Multi-Agent Systems,
pp. 456-463, 2004.

[24] M. Gharzouli and M. Boufaida, “PM4SWS: A P2P model for semantic
web services discovery and composition,” Journal of Advances in
Information Technology, vol. 2, pp. 15-26, 2011.

[25] L. Lin, S. Kai, and S. Sen, “Ontology-based QoS-aware support for
semantic web services,” Technical Report at Beijing University of
Posts and Telecommunications, 2008.

[26] Y. Zhang, H. Huang, D. Yang, H. Zhang, H. Chao, and Y. Huang,
“Bring QoS to P2P-based semantic service discovery for the universal
network,” Journal Personal and Ubiquitous Computing, vol. 7, pp.
471–477, 2009.

[27] N. Ouldahmed and S. Tata, “How to consider requester’s preferences
to enhance web service discovery,” In Proc. the second International
Conf. on Internet and Web Applications and Services, pp. 59-64, 2007.

[28] V. Sharma and M. Kumar, “Web service discovery research: A study
of existing approaches,” Int. J. on Recent Trends in Engineering and
Technology, vol. 05, pp. 106-109, Mar 2011.

[29] F. Bellifemine, G. Caire, T. Trucco, and G. Rimassa, (2003). Jade
Programmer’s Guide. [Online]. Available:
http://sharon.cselt.it/projects/jade/.

International Journal of Innovation, Management and Technology, Vol. 3, No. 4, August 2012

472

	Content
	277-Z025

