

 

Abstract—With eco-awareness and eco-regulation, the end-

of-life (EOL) disassembly sequencing problem (DSP) has 

become increasingly important in the process of recycling, 

reclamation, or remanufacturing EOL products. However, 

most of the studies in the disassembly sequencing plan assume 

that the processing time is deterministic for each part’s 

disassembling procedure. For a realistic and logical approach 

to the DSP, we take account of the stochastic concept and 

redefine each part’s disassembling time as an exponentially 

distributed function. Considering the NP-complete nature of 

the stochastic problem, this paper presents a revised simplified 

swarm optimization (SSO) to minimize the total expected 

disassembling time for the stochastic disassembly sequencing 

problem (SDSP). The results presented in the study show that 

the SSO is qualified to effectively schedule the SDSP under 

limited computation time. 

 
Index Terms—End-of-Life (EOL), exponentially distributed 

function, simplified swarm optimization (SSO), Precedence 

Preservative Operator (PPO), stochastic disassembly 

sequencing problem (SDSP), Group updating mechanism 

(Group UM). 

 

I. INTRODUCTION 

The disassembly scheduling of an end-of-life (EOL) 

product, first proposed in 1994 [1], is an eco-friendly 

research topic. The great variability in the lifespan of 

products makes the retrieval of different kinds of products 

difficult, automation is hard to achieve, and using manual 

tools is still the main processing technique in current 

disassembly environments. Hence, the necessity of this 

labour intensive approach causes a more significant 

variance in processing time than more automated industries. 

Most previous researches, however, assume that processing 

times are constant and known. In this paper, we assume that 

the processing time for each part is a random variable which 

is independent of other variables and follows exponential 

distribution. 

In this paper, we present a heuristic method called PPO-

SSO to solve stochastic disassembly sequencing problems 

(SDSP). In SDSP, the processing time of each component is 

a random variable which follows certain distribution, and it 

is assumed to be an independent exponential distribution 

random variable in this paper. In place of the exhaustive 

search algorithms which dramatically increase the cost and 

time with the amount of component growing, PPO-SSO has 

proved to be a powerful and efficient methodology for 

dealing with combinatorial problems with precedence 
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relationship constraints. In addition to the proposed PPO-

SSO, a revised SSO updating mechanism called Group-UM 

is also proposed to deal with SDSP. 

The paper is organized as follows: A brief literature 

review is presented in Section 2. In Section 3, we frame the 

SDSP model. The proposed PPO-SSO and the Group 

updating mechanism which revises the PPO-SSO are 

introduced in Section 4. A numerical experiment and its 

results are presented in Section 5 and the conclusion of this 

study is given in Section 6. 

 

II. LITERATURE REVIEW 

In this section, we discuss the various literatures on 

disassembly sequencing planning and the methodology we 

use－PPO-SSO.  

A. Disassembly Sequencing Problems 

For the effective recycling, reclamation, and 

remanufacturing of EOL products, Gupta and Taleb[1,2] 

first addressed realistic disassembly sequencing problems 

(DSP) with well-defined product structures. Subsequently, 

the DSP has been formulated from many perspectives, such 

as disassembly precedence and geometric constraints [3, 4], 

the disassembling process and plan [5-7], and design for 

disassembly [8,9]. Many kinds of methodology have been 

proposed to solve the DSP: for example, the Petri net (PN)-

based approach [4], Branch and Bound [10], and greedy 

algorithm [11]. Recently, Soft Computing such as ant 

colony optimization [12], genetic algorithm [13], and 

simplified swarm optimization [14] have also been 

implemented in DSPs. 

In these above-mentioned studies, the disassembly 

processing times of components are assumed to be constant 

and known. Considering the stochastic control in DSP, Tang 

et al. [15] built a fuzzy attributed Petri net (FAPN) model 

which represented these mathematic uncertainties in 

disassembly and developed an algorithm for the model. Yeh 

[16] considered the dependence and learning effect of the 

processing time of each part and executed SSO to optimize 

the problem. In scheduling problems, many literatures [17-

21] have assumed the processing times to be independent 

exponential distribution random variables, which is more 

practical in many real-world applications. 

B. Simplified Swarm Optimization 

Simplified swarm optimization (SSO), an emerging 

swarm intelligence stochastic optimization method, was 

proposed by Yeh [22] to overcome the drawback of particle 

swarm optimization (PSO), especially for discrete 

combinatorial optimization problems. To improve the 

efficiency and feasibility of SSO in DSP, Yeh [14] modified 

SSO by combining the feasible solution generator (FSG), 

self-adaptive parameter control (SPC), and precedence 
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preservative operator (PPO) [23, 24]. The FSG increases the 

efficiency of initializing the population to satisfy the given 

precedent rules; the SPC is proposed to dynamically adjust 

the updating parameters of SSO, which may improve 

effective and efficient exploration; and the PPO is integrated 

with SSO to generate a new feasible solution that preserves 

precedence relationships. Recently, Yeh [16] proposed a 

learning effect DSP (LDSP) model that considers the 

learning effect of processing time in DSP, and revised the 

published SSO by improving the update mechanism and 

modifying SPC to solve the LDSP. 

 

III. SDSP FORMULATION 

The stochastic disassembly sequencing problem (SDSP) 

involves the stochastic property of the processing time in 

the proposed DSP model [7, 9].A classical DSP model has n 

components arranged in a sequence (X*) to disassemble 

without overlapping and idle time between them. In SDSP, 

we regard the basic processing time as the main effect on 

the SDSP variance so the basic processing time of each 

component j is assumed to be an independent exponential 

distribution random variable with rate i  (i.e., the 

population mean of the processing time of part j at time t is 

1 / i ) [14], in which we let s
jt be the basic processing time 

in sample s for component j expressed as s
jt  ~ exp ( i ). 

Because of the stochastic property, the objective function is 

performed as an expected value of the total disassembly 

time which can be derived with Eq. (1). 

(1) 

 Where 

(2) 

(3) 

(4) 

                 (5) 

                   (6) 

In sequence X, we obtain S numbers of ,( , )s k jT X B  

such as Eq. (2), the basic processing time (in seconds) of 

component j in position k of sample s. ,( , )s k jT X B follows 

an exponential distribution with expected processing time 

1 / i . In Eq. (3) and (4), the penalty ,( , )k jT X D and 

,( , )k jT X M we assume to be constant are caused by the 

neighbours’ demand and method relationships based on the 

condition that the components in positions k-1 and k are not 

made of the same material (i.e., 1, ,k j k jm m  ) or one of 

them is not for recycling (i.e., 1, ,2 or 2k j k jd d   ). 

Besides, ,k jd in Eq. (5) denotes the type of demand of 

component j in position k (0: not demanded; 1: demanded 

for reuse; 2: demanded for recycling) and ,k jm in Eq. (6) is 

the material type of the component j in position k (A: 

aluminium; P: plastic; S: steel). In practical, there has an 

extraordinary condition, in which when components in 

positions k-1 and k are both demanded for recycling (i.e., 

1, , 2k j k jd d   ) and are made the same material (i.e., 

1, ,k j k jm m  ), this two components can be recycled 

without disassembly so ,( , )s k jT X B , ,( , )k jT X D  and 

,( , )k jT X M  are all equal to zero. To sum up: the objective 

function  of SDSP is constructed in two parts that include 

the expected processing time and the constant penalty from 

the change of disassembly directions, the disassembly 

methods, the demand after disassembling and the material 

of the component and its neighbours. Notably, there is a 

priority problem to consider in disassembly sequencing. Fig. 

1 gives an EOL product structure as an example, in which 

the precedence relationships are as follows: component 1 or 

2 must be disassembled prior to others; component 7 must 

be disassembled prior to components 6 and 3 and the 

components of their lower layers; component 6 must be 

disassembled prior to components 4 and 5. 

 
Fig. 1. Example of EOL product structure. 

 

IV. THE PPO-SSO WITH FSG 

In this section, the SSO-PPO will be introduced and a 

revised updating mechanism (UM) of SSO called Group-

UM will be proposed. The PPO-SSO preserves the 

precedence relationships of SDSP which was proved 

effective in increasing the efficiency of SSO by avoiding the 

repetition of adjusting infeasible solutions. In addition, the 

proposed Group-UM increases the global search ability by 

revising the updating mechanism. 

A. PPO-SSO 

In SSO, a group of solutions form a population and the 

amount of solutions is called population size. The selected 

variable value of each new solution is generated from the 

current solution, pBest, gBest, or a random solution. The 

pBest solution is that which has the best function value 

within its own iterative solutions and the gBest solution is 

that which has the best function value among all solutions. 

In DSP, the value of 
t
idx  expresses the component number 

at dth position of ith solution. To conquer the precedence 

relationship constraint, Yeh proposed the PPO-SSO [9], 
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which integrates the above-mentioned mechanism with the 

PPO proposed for the genetic algorithm [7] to preserve the 

precedence relationship. The revised model is as follow: 

                              (7) (7) 

Where w wC c , p w pC C c  , and 

1g p g rC C c c     are adjusted dynamically based on 

the SPC proposed by Yeh [9]; wc , pc , gc , and rc  are the 

probabilities of the new variable at generation t generated 

from the current solution, pBest, gBest, and a random 

solution in SSO, respectively.
1t

iX 

 is the ith solution, 
1t

iP 
 

is the pBest of ith solution at generation t-1; iG  is the gBest 

before generation t and X is a random solution. d  
is a 

random number between [0, 1] generated to determine the 

component at jth position. L(•) is the value of the left-most 

variable in the •solution. See the precedence relationships in 

Fig.1 as an example, in which it is assumed that the current, 

pBest, gBest, and the random solutions at generation t are 
1t

iX 
 (1708264539),

1t
iP 

 (2819736045), iG  (2793614508) 

and X (1927065843). Each number in parentheses is the 

component number arranged in the sequence position. The 

procedure of this example is listed in Table 1. We set the 

parameters as constant where 0.15wC  , 0.4pC  , and 

0.75gC  . In position 1 (d=1), since the random number

10.4 0.581788 0.75p gC C     , let the left-most 

variable 2 of iG be the first variable in 
t
iX  (i.e., 2t

iX  ) 

and delete 2 from all the solutions. In dimension 2 (d=2), 

since the random number 2 0.05323 0.15wC    , the left-

most variable 1of 
1t

iX 
is selected as the second variable and 

deleted from all the solutions. Proceeding in the same way, 
t
iX  (2178936405) is generated and must conform to the 

precedence relationships. The complete precedence is showed in 

Table I. 
 

TABLE I: EXAMPLE OF THE PPO-SSO 

 

B. Novelty of the Proposed SSO 

The new updating mechanism (UM), called Group-UM, 

is proposed by revising the updating mechanism of the 

proposed PPO-SSO. In Group-UM, the population is first 

divided into groN  groups with equal solutions. Within each 

group, the solution which has the best function value is 

chosen as the grBest. Second, the total generations (GEN) 

are segmented into two parts with given segG and GEN- segG  

generations respectively. In the first segG generations, the 

role of gBest is replaced by grBest. The novel model is: 

            (11)  

where iGr  is the grBest solution of solution i. The reason 

for replacing gBest with grBest in the first segG  generations 

is that it can expand the search space to search more 

possible solutions and increase the diversity of the 

population to avoid premature convergence. After an 

extensive search, the gBest replaces the role of grBest in the 

UM after the segG th generation to accelerate the 

convergence behaviour of the solutions. The 

implementation steps of PPO-SSO with Group-UM are 

shown in Fig. 2 and the shaded parts indicate the main 

changes to the proposed Group-UM.  

 

Fig. 2.
 
The flowchart of the PPO-SSO

 
with Group UM.
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V. NUMERICAL RESULTS 

In this study, the performances of the original UM and 

the new Group-UM of the proposed PPO-SSO are 

demonstrated and compared by using ten examples (Ex.1-10) 

from the literatures [13, 14], in which the data sets and the 

precedence relationships were presented. There are 10-

component set in Ex. 1 [13] and 13-component set in Ex.2-

10 [14]. In the SDSP, the original constant ( )kT B  in the 

data sets is the population mean of processing times which 

are random variables that independently follow exponential 

distributions. 

In the Group-UM, segG and groN  are two factors, where 

segG  means the first segG  generations taking the grBest 

over the gBest and groN  is the number of groups which are 

equal to the population size divided by the group size. 

Given the population size of 40 and 300 generations, the 

segG  has three levels of 100, 150 and 200 (expressed as G1, 

G2, and G3 respectively), and the groN  has three levels of 5, 

8, and 10 (expressed as N1, N2, and N3 respectively). Hence, 

there are nine combinations: G1N1, G1N2, G1N3, G2N1, 

G2N2, G2N3, G3N1, G3N2, and G3N3. The experiment 

results of the above combinations including the fitness 

function, standard deviation and computation time, are 

shown in Tables 2, 3 and 4 respectively. The values in 

Tables 2-4 are the original UM performance values divided 

by the corresponding performance values of each group 

combination. If the value of the combination in these tables 

is larger than 1, it means the performance of the Group-UM 

based on the combination setting is better than the 

performance of original UM, and vice versa. The averages 

of each segG  and groN  from Tables 2-4 are calculated in 

Table 5. The statistical analyses of ANOVA results for these 

performances are shown in Tables 6-8, and Figs. 3-8 

illustrate the main effects and interaction plots. According 

to the results, we observe the following: 

The effectiveness of the Group UMs: The fitness 

functions of the Group combinations are better than the 

fitness functions of original UM on average in Table 2, so 

the Group UMs have the ability to improve the effectiveness 

of SSO in SDSP. More importantly, we can observe from 

Table 3 that Group UMs are clearly more robust. The Group 

UMs in Table 4 are less efficient, which is caused by the 

additional procedure of calculating the grBest. 

The main effect of segG  and groN : In Table 5, the G3 is 

more effective and robust than G2 and G1; there is slight 

difference between the performances of N1, N2, and N3. 

From the ANOVA results of the fitness value, groN  has a 

significant effect on the fitness function in Table 6 and the 

standard deviation is affected significantly by segG  in Table 

7. Fig. 3 illustrates the main effects of segG  and groN  to 

fitness value and the results are that T3 and N3 perform 

better. The main effects segG  and groN
 
standard deviation 

are shown in Fig. 4, in which G3 and N1 are the most stable. 

The interaction of segG  and groN : From the ANOVA 

(see Tables 6 and 7), we observe that the interaction of segG  

and groN  are both significant, which means that the 

performance of segG will be changed in different groN . Figs. 

5 and 6 illustrate the interactions of segG  with groN to the 

fitness values and standard deviations. From the 

effectiveness respect in Fig. 5, G1N2 is slightly better than 

all combinations with G1, G2N3 is the best combination 

with G2, G3N3 is the best combination with G3. Fig. 6 

illustrates the interaction for SD that G1N1 is better than all 

combinations with G1, G2N3 is the best combination with 

G2, G3N1 is the best combination with G3. 

 
TABLE II: THE VALUE OF THE AVERAGE FITNESS FUNCTION RATIO 

Ex 
original 
UM 

Group-UM  
T1N1 T1N2 T1N3 T2N1 T2N2 T2N3 T3N1 T3N2 T3N3 

1 27.3484 
1.000
065 

0.998
634 

0.999
949 

1.001
929 

1.005
382 

1.000
482 

1.001
439 

1.004
95 

1.000
308 

2 
29.3575
7 

0.998
221 

0.992
786 

0.995
089 

0.994
421 

0.997
454 

0.998
574 

0.993
328 

0.994
508 

0.997
939 

3 
35.3292
8 

0.992
349 

0.991
573 

1.005
124 

0.984
805 

0.994
664 

1.002
224 

0.990
788 

0.994
848 

1.001
588 

4 28.1498 
1.014
26 

1.018
317 

1.021
028 

1.004
158 

1.017
44 

1.017
315 

1.015
571 

1.015
857 

1.014
982 

5 
29.6715
6 

1.012
141 

1.025
805 

1.023
608 

0.982
889 

1.035
145 

1.035
864 

1.022
08 

1.035
432 

1.013
216 

6 
28.9769
1 

1.007
146 

1.011
665 

0.996
572 

0.996
728 

1.004
002 

1.002
206 

1.002
248 

1.007
046 

1.014
057 

7 
39.7922
3 

0.997
532 

1.001
494 

0.994
981 

0.996
794 

1.002
05 

1.006
73 

1.006
609 

1.005
829 

0.999
356 

8 34.8053 
1.013
371 

1.019
055 

1.007
742 

0.983
915 

1.014
177 

1.006
458 

1.010
66 

1.011
799 

1.028
564 

9 
41.9658
8 

1.023
185 

1.012
336 

1.005
233 

1.005
788 

1.013
033 

1.021
429 

1.015
373 

1.002
355 

1.007
328 

10 
39.5569
1 

1.003
214 

0.996
683 

0.998
098 

0.999
303 

0.996
058 

1.001
621 

0.998
899 

1.000
166 

1.006
061 

Av

g. 
 

1.006

148 

1.006

835 

1.004

742 

0.995

073 

1.007

941 

1.009

29 

1.005

7 

1.007

279 

1.008

34 

 

 
TABLE III: THE VALUE OF THE STANDARD DEVIATION RATIO 

Ex 
original 
UM 

Group-UM 
T1N1 T1N2 T1N3 T2N1 T2N2 T2N3 T3N1 T3N2 T3N3 

1 
0.58945
9 

0.959
698 

1.039
158 

0.907
177 

1.360
643 

1.025
225 

1.407
196 

1.183
08 

1.068
955 

1.513
867 

2 
0.45142
1 

1.011
892 

1.592
387 

1.504
225 

1.376
833 

1.028
345 

1.056
88 

1.591
584 

1.014
473 

1.190
453 

3 
0.96934
8 

1.071
482 

0.887
953 

1.134
655 

0.910
135 

1.081
256 

1.384
075 

1.152
36 

1.005
682 

1.030
723 

4 
0.97694
7 

1.702
719 

1.904
499 

1.421
38 

1.184
381 

1.905
063 

1.848
482 

2.049
181 

1.858
911 

1.657
182 

5 
1.98854
8 

1.748
07 

1.697
9 

1.511
62 

0.936
382 

1.566
44 

1.353
034 

2.350
666 

2.060
268 

1.713
487 

6 
0.95420
5 

1.386
062 

1.240
298 

1.016
316 

0.928
695 

1.575
693 

1.772
61 

1.324
909 

1.452
049 

1.723
907 

7 
1.23126
2 

1.931
443 

1.283
171 

1.383
097 

1.297
9 

1.397
852 

1.276
362 

1.497
35 

1.888
459 

2.007
065 

8 
2.25238
6 

1.414
178 

1.293
808 

1.222
81 

1.382
264 

1.420
539 

1.325
604 

1.642
515 

1.161
252 

1.374
273 

9 
1.75013
9 

1.268
74 

1.398
565 

0.946
466 

0.922
686 

0.848
181 

1.269
759 

1.753
304 

1.315
044 

1.072
722 

10 
0.53373
3 

0.822
55 

0.647
907 

0.929
829 

1.023
646 

1.130
503 

0.937
39 

1.292
667 

1.037
382 

0.666
028 

Av

g. 
 

1.331

68 

1.298

56 

1.197

76 

1.132

36 

1.297

91 

1.363

14 

1.583

76 

1.386

25 

1.394

97 

 

To sum up, the PPO-SSO with Group updating 

mechanism is conducted to deal with the SDSP and is 

proved to have excellent efficacy and stability. Moreover, in 

the experiment we executed, the results show that when a 

larger segment generation parameter ( segG
) is adopted, 

algorithm stability will be strengthened, and effectiveness 

will be improved when the group numbers ( groN
) setting is 

increased. 
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TABLE IV: THE VALUE OF THE COMPUTATION TIME RATIO 

Ex original UM 
Group-UM 

T1N1 T1N2 T1N3 T2N1 T2N2 T2N3 T3N1 T3N2 T3N3 
1 3.435633 0.934027 0.989222 0.951708 0.955625 0.976781 0.953883 0.88453 0.9234 0.95413 
2 4.446 0.96247 0.992573 0.942542 1.077122 0.994075 0.967868 0.956115 0.861483 0.945803 
3 4.524533 0.96498 0.992585 0.946364 0.888784 0.996447 0.965955 0.969418 0.906242 0.980503 
4 3.925467 0.968382 0.998804 0.968574 0.984624 1.000663 0.977425 0.957065 0.916544 0.982423 
5 4.1574 0.957265 0.991321 0.956538 1.131173 0.988007 0.962034 0.935011 0.930074 0.959208 
6 4.031567 0.966347 1.000257 0.952526 1.087399 0.995121 0.963437 0.942535 0.979487 0.967073 
7 4.490733 0.966435 0.989577 0.953818 1.160966 0.992764 0.964954 0.963683 0.892252 0.963732 
8 4.2713 0.967364 0.99024 0.959117 1.303444 0.990362 0.964909 0.938067 0.924851 0.991074 
9 4.324833 0.962214 0.98894 0.951552 1.259954 0.989876 0.965271 0.828798 0.920145 0.910689 
10 4.6223 0.969808 0.99363 0.956213 1.234797 0.997647 0.970548 0.883906 0.937586 0.967049 

Avg.  0.961929 0.992715 0.953895 1.108389 0.992174 0.965628 0.925913 0.919206 0.962169 

 
 

TABLE V: THE PERFORMANCE RATIO AVERAGES OF 
segG

AND 
groN

 

Tc Fit SD T Ng Fit SD T 

T1 1.005909 1.276002 0.969513 N1 1.002307 1.349267 0.998744 

T2 1.004101 1.264468 1.022064 N2 1.007352 1.327574 0.968032 

T3 1.007106 1.454993 0.935763 N3 1.007458 1.318622 0.960564 

 
TABLE VI: ANALYSIS OF VARIANCE FOR FITNESS VALUE 

 TABLE
 
VII:

 
ANALYSIS OF VARIANCE FOR SD

 

Source of 

variation 

Degree of 

freedom 

Adjusted 

mean square 
F-value p-value  

Source of 

variation 

Degree of 

freedom 

Adjusted 

mean square 
F-value p-value 

Ex 9 272.96 5282.87 0  Ex 9 1.78991 54.29 0 

Tc 2 0.07 1.37 0.26  Tc 2 0.16469 5 0.009 

Ng 2 0.24 4.67 0.012  Ng 2 0.00302 0.09 0.913 

Tc*Ng 4 0.22 4.27 0.004  Tc*Ng 4 0.10841 3.29 0.016 

Error 72 0.05    Error 72 0.03297   

Total 89     Total 89    

S=0.227306 R-Sq=99.85%,    R-Sq(adj)=99.81%  S=0.227306 R-Sq=99.85%,    R-Sq(adj)=99.81% 

 

 

 

 

Fig. 3. Main effect in 
segG

 and 
groN

 for fitness value 

 

Fig. 4. Main effect in 
segG

 and 
groN

 for SD 
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Fig. 5. Interaction for fitness value of 
segG

 and 
groN
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Fig. 6. Interaction for SD of 
segG

 and 
groN

 

 

VI. CONCLUSION 

This paper constructs the SDSP model which considers 

the stochastic property of the disassembly processing time 

of the proposed DSP. The model would be close to the real 

world circumstance of disassembly. The work also proposes 

a novel SSO by revising the updating mechanism called 

Group-UM to strengthen the global search ability and 

enhance the effectiveness of identifying the optimum 

disassembly sequencing of SDSP. The experiment and 

statistical results prove
 
the improvement

 
of Group-UM and 

show the effects of the parameter adjustment for 

performances such as expected value and standard deviation
 

in SDSP. Future research may study the problem on a larger 

scale by increasing the numbers of components, or
 

investigating a
 
more general SDSP model

 
such as different 

distribution or other factors in the model. A
 

different 

methodology or improvement to
 

SSO could also be 

proposed to enhance efficiency.
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