
  

   
Abstract—Most organizations have to cope with the short 

term random movements in supply and demand. In today’s 
competitive marketplace, achieving manufacturing excellence 
has become critical for success. This paper examines the 
behavior of firm over time using system dynamics model as a 
basis for setting inventory situations. Consay Company 
Discount Store (in Poland) stocks socks in its warehouse and 
sells them through an adjoining showroom. The store keeps 
several brands and styles of socks in the stock; however, its 
biggest seller is Super socks marketing. A simulation model was 
created in order to examine the behavior of the inventory model 
over time. The store wants to determine the behavior of the 
inventory by using system dynamics (SD). The results of 
simulation showed that the long run behavior of the company is 
significantly different, depending on the inventory model 
chosen. 
 

Index Terms—Behavior, system dynamics, inventory, 
responsiveness, order cycle. 
 

I. INTRODUCTION 
Inventory is defined as a stock or store of goods. These 

goods are maintained on hand at or near a business location 
so that the company may meet the demand and fulfill its 
reason for existence. Inventory types can be classified into 
four groups: raw material, WIP1, finished goods and MRO2 
goods.  

The company usually keeps larger inventory than it is 
required to meet the demand and to keep the factory running 
under the current conditions of demand. If the company 
exists in a volatile environment where demand is dynamic, an 
on-hand inventory could be maintained as a buffer against 
unexpected changes in demand. This buffer inventory can 
also serve to protect the company if a supplier fails to deliver 
the raw materials at the required time, or if the supplier's 
quality is found to be substandard upon inspection. Other 
reasons for maintaining an unnecessarily large inventory 
include taking advantage of quantity discounts, or ordering 
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1 WIP (Work-in-process) 
2 MRO (Maintenance, repair, and operating supplies)   

more goods in advance of an impending price increase.  
The inventory cycle for a company is composed of three 

phases. The first step is the ordering or administrative phase, 
which is the amount of time it takes to order and receive raw 
materials. The second step is the production phase, which is 
the work in progress phase. The last step is the finished goods 
and delivery phase.  

The inventory cycle is measured as a number of days. 
Demand is relatively constant over time, and no shortages are 
allowed. The lead time for the receipt of orders is constant 
and the order quantity is received once at all. Safety stocks 
are buffer added to the on hand inventory during the lead time 
while the stock-out is an inventory shortage. The service 
level is probability that the inventory available will meet the 
demand during the lead time. 

The main tool of system dynamics is representing the 
system being studied as an influence graph. The influence 
graph indicates the major variables in a system and the 
influences have these on each other as a sense-making device, 
allowing an analyst to organize and understand a complex 
problem domain. 

The influence diagram is then manually converted into 
more complexes called a ‘stock and flow’ diagram. It 
includes nodes for each of the model’s parameters. The stock 
and flow diagram is used to develop a set of equations, which 
are used in a numerical simulator to generate the behavior of 
the system. This case study is a make-to-order case for 
industries considered for the Consay Company (Poland).  

 

II. RESEARCH OBJECTIVES 
There are three main objectives for the research. First, to 

build a SD performance assessment framework model for the 
inventory order cycle policies (IOCP). Second, to identify the 
performance drivers in IOCP. Finally, to investigate and 
understand the dynamic behavior that characterizes IOCP. 

 

III. LITERATURE REVIEW 
Ardalan analyzed the effects of a special order during the 

sale period on the inventory costs [1]. He reviewed the joint 
effect of marketing and inventory policy on total profit by 
taking a general price demand relationship for determining 
the retailer optimal price and optimal ordering policy [2]. 

(SD) models, First introduced by Forrester [3], have 
proven their applicability to analyzing strategic scenarios as 
well as simulation of policies and operations in 
manufacturing systems [4]. Application of SD in 
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manufacturing systems was focused mainly on 
pure-inventory and how the system can be designed and 
analyzed to respond to unanticipated demand with maximum 
stability and minimum cost [5]. Some studies have reviewed 
the dynamic behaviors of a variety of complex systems in the 
domain of human activity systems such as organizational 
management [6, 7]. 

These systems are characterized by a lack of explicit 
knowledge about the fundamental mechanisms of the system 
work, as well as a lack of quantitative information on how 
such mechanisms operate. The presented modeling approach 
differs from previous inventory order cycle models [8, 9] as it 
considers more performance measures to determine the best 
order cycle policy. The objective of the present research is to 
explore the best inventory cycle policy to be adopted. 

 

IV. THE SYSTEM DYNAMICS APPROACH  
System dynamics deals with the mathematical modeling of 

dynamic systems and response analyses of such systems with 
a view toward understanding the dynamic nature of each 
system and improving the system performance. Response 
analyses are frequently made through computer simulations 
of dynamic systems. A system is a composed of a set of 
acting together to perform a specific objective. A component 
is a single functioning unit of a system, and it is called 
dynamic if its present output depends on the past input. But if 
current output depends only on the current input, then the 
system is known as “static”. The output of a static system 
remains constant if the input does not change. The output 
changes with time if the system is not in a state of 
equilibrium. 

SD models have been applied to various fields in the 
natural and social sciences. There are still countless problems 
and issues where correct understanding is a problem and the 
dominant theories are event-oriented rather than dynamic in 
nature [10]. Within the realm of SD modeling, understanding 
the connection between SD model structure and behavior in 
complex model formulations is a big challenge [11]. The 
fundamental modes of observed behavior in dynamic systems 
are exponential growth, goal seeking and oscillation. 

SD is a policy modeling methodology based on the 
foundations of (1) decision making, (2) feedback mechanism 
analysis and (3) simulation. Decision making focuses on how 
actions are to be taken by decision-makers. Feedback deals 
with the way information generated provides insights into 
decision-making and affects decision-making in similar cases 
in the future. Unlike in a real social system simulation 
provides decision-makers with a tool to work in a virtual 
environment where they can view and analyze the effects of 
their decisions in the future. SD has many steps in the process 
of simulation. Fig.1 illustrates seven steps of it. 

Forrester was the first person who used the concept of SD 
in an article entitled “Industrial Dynamics: A Major 
Breakthrough for Decision Makers”, which appeared in 
Harvard Business Review in 1958. His initial work focused 
on analyzing and simulating the microlevel industrial 
systems such as production, distribution, order handling, 
inventory control and advertising. Forrester expanded his SD 
techniques in “Principles of Systems” in 1968, where he 

detailed the basic concepts of SD in a more technical form, 
outlining the mathematical theory of feedback SD [12]. 

 

 
Fig. 1. The Process of simulation. 

 
The approach of SD was created and developed by a group 

of researchers led by Forrester at the Massachusetts Institute 
of Technology (MIT) in the late 1950s. SD builds on 
information-feedback theory, which provides symbols for 
mapping business systems in terms of diagrams and 
equations, and a programming language for making 
computer simulation [13]. A SD model captures the multiple 
feedback loops underlying the endogenous behavior of a 
particular problem. Simulation enables exploring “what-if” 
scenarios and policy tests in something approaching a 
laboratory setting, leading to growing confidence in 
particular policies and strategies [14, 15]. It has a long history 
analyzing complex problems in a variety of application 
domains, ranging from environmental or public policy, 
corporate strategy, security, healthcare and operations 
management, to change management. However, it has no 
extensive application in the marketing literature. The 
characteristics of the marketing decision 
environment–multiple inputs and outputs, delayed effects 
and nonlinearities– are precisely the characteristics that 
laboratory experiments suggest that managers could not do 
well intuitively [16]. Inventory policy involves deciding 
appropriate stock levels, reorder points and quantities. After 
setting stock policy, the effect and cost are evaluated. The 
simulation is provided with a database of product data that 
can be added to and changed [17].  

 

V. CAUSAL LOOP DIAGRAMS 
Causal Loop Diagrams (CLDs) have been used in standard 

system dynamics practice for purposes connected with 
simulation modeling. They are nowadays mostly used prior 
to simulation analysis, to depict the basic causal mechanisms 
hypothesized to underlie the reference mode of behavior over 
time, that is, for articulation of a dynamic hypothesis of the 
system as endogenous consequences of the feedback 
structure[18]. They also form a connection between the 
structure and the decisions that generate system behavior. 
Later, CLDs have started to be used for purposes not 
necessarily related to model building, namely, for detailed 
system description and for stand-alone policy analysis  [19]. 

The other common notations for SD and system thinking 
are Stock-and-Flow Diagrams (SFDs). Proponents of SFDs 
criticize the ambiguity and lack of detail in CLDs, which 
prevents simulation of the modeled systems and prefer at 
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least to start with stocks [20]. CLDs have been used for 
brainstorming and then to switch to an SFD, which models 
the system exactly. This raises the question that how CLDs 
can be used as a base for an SFD [21] . 

CLDs can be a good start for system modeling. However, 
the transition to SFDs is not straightforward. The information 
on SFDs is hidden in the CLDs and collapsed into links and 
factors. Extraction of stocks and auxiliaries from the CLDs 
requires further investigation of the links and what they 
represent. This process may increase the number of factors in 
the system. In order to further develop the CLD, the modeler 
is, therefore, required to have in-depth knowledge about the 
system considered. The main difference to the work 
presented here is the dynamic change of the CLD into an SFD, 
and on the other hand, a link-centered way of looking at these 
diagrams, contrasting the factor-centered way introduced 
[22]. 

 

VI. QUANTICATION 
The process of turning an SFD into a model is called 

Quantication, which will be briefly discussed here. In order 
to quantify an SFD, the modeler has to provide (i) Start and 
end time for the simulation run, (ii) Formulas for allow and 
auxiliary factors, including the speciation of the delay values 
or functions for all links in SD, (iii) Values or time 
independent functions (i) for all input factors, (iv) Initial 
values for all stocks, and (v) Initial values or time-dependent 
functions for all factors, which have outgoing dependencies 
with delays. The data in (iv) and (v) are often simply assumed 
to be zero. Another technique to avoid having to specify (v) is 
to simulate the model until it may reach a steady state, in 
which case one simply discards the initial time segment of the 
simulation. SD is both a system enquiry methodology [23] 
and a modeling approach. A model is a substitute for an 
object or a system [24] and some systems can be modeled in 
terms of levels and rates. Levels are the states of a system, 
which would exist even though the system was brought to 
rest. Rate variables are control variables that regulate the 
flow into and out of the levels, the flow of decisions, but flow 
rates themselves are not input to the decisions. 

 

VII. CASE STUDY (THE POLISH CONSAY COMPANY) 
The SD model is not limited to special state in every 

modeling stage. Although the model can be used in various 
cases, it has been established to examine the Consay 
Company’s situation in this study. In order to study and 
examine the present situation of the company, suggest future 
production strategies, and verify and validate the model, the 
activities of this company will be described here. The domain 
of this company’s activities is production of different types of 
sock with the participation and investment of internal and 
external corporations and incorporations. 
 

VIII. MODEL DESCRIPTION 
The development of an appropriate model for inventory 

order cycle in RMS, which incorporates different parameters 

involved in that process, is an essential step. Appendix (1) 
shows a system dynamic model for unpredicted events for 
responsiveness inventory order cycle in RMS.  

The model expresses the order quantity as a stock level 
controlled by other parameters. In addition, it incorporates 
the inventory, shipment rate, production rate, demand, 
utilization, order rate, total value sales orders waiting to be 
filled, order fulfillment rate, production per customer, 
minimum cycle time, order delay, order delay effect, normal 
delivery delay, order cycle, look up order delay, new 
customer, normal effective referral fraction, customers, 
capacity and customer order rate.  In this study, a 
continuous-time model is used because it provides an 
acceptable, approximation of the continuous process in RMS. 
Finally, similar dynamic characteristics can be obtained 
using discrete-time models [25] . Deterministic data are used 
in the analysis to provide a simple and yet effective 
comparison among the various scenarios. 

 

IX. MATHEMATICAL MODELS DESCRIPTION 
Any attempt to design a system must begin with a 

prediction of its performance before the system itself can be 
designed in detail or actually built. Such prediction is based 
on a mathematical description of the system’s dynamic 
characteristic. This mathematical description is called a 
“mathematical model”, which is classified into linear and 
nonlinear differential equations. The linear differential 
equations (LDE) may be classified as linear time-invariant 
differential equations and linear time varying differential 
equations.  

 

X. MODEL NOMENCLATURE 
* Order cycle = Interval of time or period between the 

placing (which means the act of finding a single buyer or a 
group of institutional buyers for a large number of shares in a 
new company or a company that is going public ) of one set 
of orders and the next. * I(t)= Inventory, * Sh R(t) = shipment 
rate, the desired shipment rate is calculated as a function of 
the current backlog and the target responsiveness time. * PR(t) 
= production rate, * OR (t) = order rate, * SOWF(t) = 
value-sales-orders waiting to be filled, * OFR(t)= order 
fulfillment rate,  * PPC(t) = production per customer, * 
MCT(t) = minimum cycle time, * OD(t) = order delay, * 
ODE(t) = order delay effect, * NDD(t) = normal delivery 
delay, * LOD(t) = look up order delay,  *NC(t) = new 
customer, *NER(t) = normal effective referral fraction, *Cu (t) 
= customers, *Ca(t) = capacity: the target responsiveness 
time. It represents the manufacturer’s goal for the interval 
between the placement and receipt of orders. The 
responsiveness time is a major performance measure of these 
responsive systems and tends to be low. 

 

XI. MODEL LOGIC 

A. Total value-sales-orders waiting to be filled: 
The equation for the order rate (Eq. 1) is determined by 
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customer’s order rate, order delay effect and products per 
customer. Total value sales orders waiting to be filled are 
controlled through integration of order rate and order 
fulfillment rate (Eq. 2): 

OR (t) = COR (t) * ODE (t) * PpCu(t) Eq.1 

SOWF (t) =INTEG (OR (t)) – FR (t) Eq.2 

The order fulfillment rate has three components: total 
value sales orders waiting to be filled, cycle time, and 
capacity (Eq. 3). New customers are determined from order 
fulfillment rate and products per customer (Eq. 4): 

OFR (t) = MIN (SOWF (t))/minimum CT, Ca Eq. 3 

NCu = OFR (t) / PpCu(t) Eq. 4 

B. Inventory and order delay 
The inventory mechanism in the developed model follows 

the same SD introduced by Sterman [7]. The inventory is 
controlled by the inventory gap between the production rate 
and the shipment rate level (Eq. 5). 

I (t) = PR (t) – ShR (t) Eq. 5 

The order delay is fulfilled by the total value sales orders 
waiting to be filled and the order fulfillment rate (Eq. 6). 
Order delay effect is given by the look up order delay and 
order delay  

with normal delivery delay (Eq. 7). 
OD (t) = SOWF (t)/OFR (t) Eq. 6 
ODE (t) = LOD (t) (OD/NDD (t)) Eq. 7 

C. Customer 
The customer order rate level is calculated as the 

difference between the customer and the normal effective 
referral fraction Eq. 8, while customer is the integer of new 
customers Eq. 9: 

CuOR(t) = Cu*NERF(t) Eq. 8 
Customer = INTGER (NCu) Eq. 9 

 

XII. VERIFICATION AND VALIDATION: 
 By using extreme condition tests, the structure of the 

model was directly validated[26]. Input values such as zero 
or infinity make the model behave as a realistic system. 
Extreme values were assigned simultaneously to all input 
variables in order to analyze the value of the output, which 
should be reasonable for a real system under the same 
extreme condition. The “Reality Check” function of Vensim 
simulation was used to achieve this. It is test in system 
dynamics and these tests are done to confirm the correctness 
of modeling and examine the results from the viewpoint of 
validity. Verification, dimensional- consistency, boundary 
adequacy and parameter verification tests have been 
performed implicitly during studying and modeling of the 
Consay Company.  

The test is relevant to policy implications; it will be 
investigated in the following. As a general rule, a question is 
propounded in each test, and its answer leads to verification 
and validation of the proposed model. Without discussing the 
details, the interactions of this SD model are as follows. 
(There will be three levels to be modeled: inventory, total 

value sales orders waiting to be filled, and customers):  
In this model, it is assumed that all the demand is being 

satisfied. The customer is a function of a random factor that 
introduces random fluctuations. The order rate level 
influences positively the order fulfillment rate while 
customer level influences the customer order rate. The new 
customer was modified by the costumer level with normal 
effective referral fraction and products per customer. In this 
model, it is assumed that if the inventory is high, the company 
lowers the product price.  Capacity is an issue that every 
operation is faced with. Furthermore, it is an activity, which 
can profoundly affect the efficiency and effectiveness of the 
operation. It is concerned with making sure that there is some 
sort of balance between the demand placed on an operation 
and its ability to satisfy that demand. If an operation has too 
much capacity at any point in time, it will be underutilizing 
its resources. If it has too little capacity, its costs will be low 
(because its facilities will be fully utilized), but its customer 
service will be poor because it is either turning customers 
away or making them wait for their products and services. 
This will potentially undermine the company’s success in the 
future. Therefore, there are serious consequences of getting 
the balance between demand and capacity wrong. 

 

XIII. NUMERICAL SIMULATION RESULTS AND ANALYSIS 
In order to illustrate the dynamic behavior and 

performance of the inventory policies, the SD Model 
demonstrates a sudden step change in the demand to give a 
dramatic shock to the system and represents cyclic demand 
fluctuating scenarios for which RMSs are designed. Policy 
differs from rules or law. While law can compel or prohibit 
behaviors, while policy merely guides actions toward achieve 
a desired outcome. Policies also refer to the process of 
making important organizational decisions. It is typically 
described as a principle to guide decisions and achieve 
rational outcome(s).Three responsiveness inventory order 
cycle policies are selected for the assessment of SD model: 

A. Policy1: Making-to-order Performance and Chase 
Demand Plan: 
The first policy is based on making to order for reducing 

inventory and increasing the level of customization, which is 
achieved by setting the products per customer demand to 1. 
Fig. 2 shows the first pattern that demonstrates a sudden step 
change in products per customer to give a dramatic shock to 
the system. The system responds well to such change.  

 
Fig. 2. Products per customer graph for sudden change scenario. 

 
Dynamic modeling was performed for the Consay 
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Company and the simulated results were obtained by Vensim 
software. The correct prediction of system behavior as a 
result of dominant policy is changed by preceding efficient 
policies to utilize the facilities toward stable development 
and dominant policy is changed by making reasonable 
changes in the parameters’ values or the equations 
formulation. 

By setting products per customer demand to 1 the 
customers system immediately responds to the customer 
order rate and new customers shock by increasing the 
customer level to 25% Fig. 3. The total value sales order 
waiting to be filled is in turn decreased to match the demand 
increase Fig. 4. Production strategy is whereby the Output 
increase or decrease in the step with rising or falling demands, 
respectively. As demand varies, business strategy involves 
matching supply with the demand. 

 
Fig. 3. Customer graph. 

 
Fig. 4. Total value sales graph. 

 
The strategy is suitable for the end suppliers of a product or 

service who can closely match supply and demand. A 
problem associated with this strategy is that, in periods of low 
demand, the company will be working below its maximum 
capacity and may have to make staff redundant. Methods of 
chasing demand include: employing staff on overtime when 
necessary, employing flexible and casual labour, buying in 
components that are usually made in-house; and outsourcing 
elements of the production process. This strategy is in 
contrast to a level output strategy, where the output is at the 
rate of the average demand. The plan for matching output to 
the customer needs, demands a production control plan that 
attempts to match capacity to the varying levels of forecasted 
demand. Chase demand plans require flexible working 
practices and place varying demands on equipment 
requirements. Pure chase demand plans are difficult to 
achieve and are most commonly found in the operations 
where output cannot be stored or where the organization is 
seeking to eliminate stores of finished goods. 

B. Policy 2: Fixed and Changeable Demand  
Some unpredicted events for responsiveness of the 

inventory order cycle policy in the Consay dynamic model 

have been reviewed on the basis of the importance (from the 
results of a questioner designed for this proposes). We 
assumed that increasing demand in the dynamic marketing 
effects on the inventory level and production rate. Fig. 5 
shows the inventory level when the initial value for the 
inventory was 100,000 socks and with a product rate 1000 
socks/day. The first pattern (the continuous line) 
demonstrates an inventory level when the product rate is 
equal to 1000 socks/day while the second one with the stable 
previous demand and a product rate is equal to 6000 
socks/day. 

 
Fig. 5. Inventory graph. 

 
The first pattern in Fig. 5 shows that the inventory level 

will be stable for 52 weeks and then the inventory level will 
be decreased. The second pattern in Fig. 5 illustrates the 
dynamic behavior when the company increases the product 
rate to 6000 socks/day and the effect remains ascending until 
78 weeks, then the effect takes a decreasing trend.  

In order to illustrate the dynamic behavior and 
performance of the inventory level, the effect of increasing 
demand from (10%) to (25%) on the inventory level was 
reviewed. Fig. 6 shows the dynamic behavior for the 
inventory level for the two demand patterns. Fig. 7 shows the 
product rate that company must realize with request to the 
increasing in the demand behavior. 

 
       Fig. 6. Inventory level with 15-25%      Fig. 7. Product rate level with         
           increase in the demand graph.   15-25% increase in the demand graph. 
 

Other unpredicted events for the responsiveness of 
inventory order cycle policies reviewed when the demand 
will be decreased while the company stables the product rate. 
Fig. 8 shows the inventory level when the demand is 
decreased to (50%) with a stable production rate. 

The first pattern shows that the inventory level will be 
stable for 78 weeks and then its level will decrease to its 
minimum level. The second pattern shows that when the 
demand decreases to (50%), the company could keep the 
inventory level for 104 weeks. Under this situation, the 
inventory cost will be increased and will, in turn, decrease the 
company’s profit. 

Other unpredicted event for responsiveness of inventory 
order cycle in the Consay Company was viewed when the 
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demand was decreasing while was product rate increasing. 

 
Fig. 8. Inventory level with 0.5 demand graph. 

 
Fig. 9 shows that the increase in the product rate with the 

decreasing demand will cause an increasing of about 20% in 
the inventory level. Under this situation, the inventory cost 
will be increased, leading to decreasing in the company’s 
profit.  

 
Fig. 9. Different inventory level for product rate graph. 

 

XIV.  CONCLUSION 
In this paper, a dynamic model was presented to the 

responsiveness of Consay Company inventory by using the 
system dynamic’s simulating tool and Vensim software. The 
aim is to help reconfigurable manufacturing systems to 
investigate the best policy for various demand scenarios. The 
Model, which was based on the system dynamic approach, 
reflects the dynamic nature of modern market demand 
patterns. The important is the behavior of different 
parameters of the model, not the numbers generated in the 
model runs. Different scenarios were developed merely to 
expose the system’s behavior. Thus, they are mostly 
qualitative and may not represent any realistic future.  This 
model was verified and validated based on the studies in the 
Polish Consay Company.  Sensitivity analysis was applied on 
the parameters, and policies were presented. Simulating the 
model by the proposed policies led up to stable approximate 
stability of the inventory in the desired inventory policies. 
This matter facilitates exact production planning. The model 
can be generally used in Consay Company by selecting 

proper parameters. 
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