

Abstract—Web usage assistance through client side

computing has become a mandatory feature in new extensible
browsers with decrease in hardware prices and increase in
computation power on client side. Utilizing client resources to
aid client is the aspect in which this paper deals with. This
paper presents design of User Assist System for Mail
Composition (UAMC), a tool which helps users to send
everyday emails quickly and efficiently.

Index Terms—JavaScript, PHP, model view controller, Mac
Apache MySql PHP (MAMP), grease monkey.

I. INTRODUCTION
WWW (World Wide Web) has become the most impor-

tant place for all network users, either connected by a
personal computer, laptop or a personal device. Web has
changed from a static information guide to a collaborative
framework where users from novice to professional use it
without needing much assistance or training unlike old days.
Browsers became a medium to run applications which
replaced the static web pages. With client side scripting
being rampant, the pages are designed to respond to users’
needs and alert based on users preferences. The same
principle of recommend-ing the user based on his/her
preferences while composing mail to finish it quickly and
efficiently is discussed in this paper. Today, one of the main
applications of internet is for transferring messages.
Several mail applications help people to send messages to
others.

This paper presents the design of a user assist system for
mail composition (UAMC), which is a recommender
system that helps users while typing emails for quick and
concise emails. The Mail Clients these days are free and
offer ad- ditional flexibilities such as maintaining
friends list, mail list, trash, filtering spam, etc. All these
capabilities of mail increased its usability and reduced the
effort in organizing and sending the mail. But till now, no
mail client offers a clean solution for sending a mail
quickly without much tedious work of typing, organizing
content and checking especially for mails which have
almost have the same content but needed to be changed a
little and to be send to a person based on the context.
Consider a scenario where a mail needs to be sent from
person A to person B. A is not proficient in english and
hence types his mail in his own language (say A’s mother
tongue) and assume that B is acquaint with A’s mother

Manuscript received November 17, 2011; revised December 20, 2011.
The authors are with the Birla Institute of Science and Technology,

Pilani, India. (e-mail: mangesh.bedekar@gmail.com).

tongue. So he needs to type the entire matter and then send
it. Say A wants to send the same mail to B again but with
some changes in it, since its mother tongue, copy pasting
the previous mail may doesn’tnecessarily work. What if,
while A is typing the message, he can get the entire word
or sentence to autocomplete on key press of just his first
few letters, and also show other options like recommending
the user about his/her most used words/sentences for
particular context so that the user can either choose a
word or sentence to autocomplete. Observe here that the
user need not type the full sentence saving him the manual
or laborious work. If this process is applied to a user who is
typing a mail, he can finish a normal mandatory mail in
less than a minute with the help of the recommender system.
This helps the users to not only quickly complete a mail but
also send it in an efficient and customized way. There are
other simple mail applications[1] like force mail to use
secure connection i.e https instead of http, alert while
replying, these are applications without any extra
components that can be written using Grease Monkey[2].
UAMC also uses Grease Monkey [3] along with other
components as discussed in the later part of the paper.

The above example gives the gist of the system.
However the conceptual thinking and implementation part
of the system is dealt in next few sections. The paper is
organized in the following manner, Section II i.e next part
deals with the methodological framework of the system,
Section III shows the algorithm used, Section IV deals
with the design and implementation of the system which
briefly describes each component, Section V speaks about
the Design Considera- tions. Then the paper is concluded in
Section VI with some remarks on the system along with
future research needed to develop this system into a more
reliable, efficient system.

II. METHODOLOGICAL FRAMEWORK
This part of the paper presents the background of the

application. The basic idea for this application is that it
should minimize human effort in composing mails which
have repeated words or sentences in them. Typing a mail all
over again is a tedious job. For ex: In a company mail, if
say a person always starts with ”Good Day to you”, then
for every mail, he needs to type the sentence. With the help
of system which processes the user’s pattern we can
provide the user a direct solution rather than the waste time
typing the mail. Another simple example in this case would
be, in GMail application if we want to send a mail to
someone and type first few letters of their name in the ’To’
box, it autocompletes the mail address for us, so this
concept is extended for the’Content’ area of the mail.
UAMC considerably saves users time by capturing user

Web Personalization Design and Implementation of a
User Assist System for Mail Composition

Vidyuth Dandu and Mangesh Bedekar

International Journal of Innovation, Management and Technology, Vol. 3, No. 1, February 2012

46

intent from time to time and shows it when he writes an
email. The entire process is captured in a flow chart as
shown below in fig 2.

Fig. 1. Flow chart.

The Compose page of the Mail Application has 4

parts, ’To’, ’CC’, ’Subject’ and ’Message’ fields. As we
mentioned UAMC is a recommender system which
operates in Message field. The ’To’ field as discussed
above already has autocom- plete feature provided by the
Mail Application in the form of XMLHTTP requests, as
is ’CC’ field. The subject field is mainly context based and
hence even though recommendations be provided, would be
of less use than when it’s used in the message field. Hence
the UAMC system mainly concentrates on the ’Message’
field as its main field and leaves other fields. Message field
of the mail is essentially important part of a mail and
typing long mails essentially is a time consuming and
complicated task.

The usage of the application with respect to a user can be
categorized into 3 phases as depicted below.

A. Learning Phase
As the name suggests, this phase learns from the user as

he starts using the application. The JavaScript code is
responsible for this. It fetches data from the user while he
is composing a mail and sends the words to a local server
running on the client system. The local server is the
MAMP(Mac, Apache, Mysql and PHP)[4] server which
runs on the client machine.

B. Processing Phase
This phase, as mentioned earlier and by name is

responsible for collecting the data, parsing it. The words are
sent by the JavaScript code. The words here are checked for
only stop words and also other words of local language,
his/her common typing habits. A future inclusion as
mentioned later would be to ask user for his options
(customize) on the words of inclusion/exclusion. The PHP
script also refers to the database for already included words
and increment their count. The incrementing is a part of
business as it literally gives the idea of most used/unused

words. The aspects of the algorithm will be discussed later.

C. Recommendation Phase
Data is sent back after being processed from the script

running on the script. The words/sentences sent are
generally based on ranking system adopted in the script and
the most suitable word for the context. The user can now
decide the various options shown for autocompletion. All
this is done when the user types first few letters of the word.
Depending on the context not only word, but also sentences
can be suggested by the system.

Fig. 2. Use case diagram.

The entire scenario of this application as discussed is

depicted in the fig.2 Use Case diagram. The system is
essentially a combination of user-side JavaScript code and
a php script running on the server (with the database)
also at the user side. As do all JavaScript’s this acts acts on
the webpages used by the user, but as the target of the
system is to help user in composing mails. This system as
of now isrestricted to run only on mail applications web
pages. Briefly the scenario, Once the user logs into mail
account and starts composing mail, the JavaScript runs
on the web page and it transfers the content of the
mail(whatever, user is typing) to the local server which is
password protected by the user itself. So there is a
decreased chance of stealing important words, also all the
words which go into the server are mostly stop words and
user habituated words. Important words in mails like
passwords or numbers are filtered about by the php script
before sending them to the database for storage. So there is
no privacy concerns involved here. Once the data reaches
the server, it is processed their by the php script, this
script is responsible for not only filtering input data and
storing in database but also this script offers additional
capabilities such as storing user preferred words/sentences
as permanent, removing some unused sentences from the
database by setting them appropriate decay time, thus it
basically monitors the pattern of the inbound sentences to

International Journal of Innovation, Management and Technology, Vol. 3, No. 1, February 2012

47

efficiently manage the huge incoming data. The database
attributes as of now are the word field and count field.
So as to know the most used words/sentences which
helps us to rank them when recommending to the user. So
the user has the option of selecting among those top 10
ranked words/sentences. Once the user selects them, the
script would update the sentence rank. So it can be
viewed as kind of self referential. The future section
would define some more capabilities which will make the
system more advanced. It should be remembered that
there is a clear possibility of saturation of the inbound
data i.e this is where the incoming data becomes
redundant and hence proper management should be done
by the script to reduce inconsistencies in the data. So all
the main or core processing part is done by the php script
sitting on the server of user. The browser script i.e
JavaScript is responsible for sending and receiving the data,
it also provides users various options of say, prioritize some
sentences/words, remove some sentences/words, it
indirectly gives an interface to manage the data on the
server side, so the JavaScript acts as a controller between
the webpage and the server.

After all this, it should be remembered that database is
an open ground here, it is open to play on it, i.e it’s
continuously gets updated as the user composes mails.
Therefore UAMC is a robust system with a robust
architecture (MVC) and script. The next part of the paper
presents with the design and implementation part of the
system (UAMC). Section IV deals with how the system is
organized in a component view.

III. ALGORITHM
This section presents with the algorithm which is

currently in use to capture user input from the textarea in
the mail webpage. The algorithm makes use of the Grease
Monkey API’s (Application Programming Interface) [5].
One of the main method/API used is the GM
xmlhttpRequest[6] is widely used. It also shows some
snapshots of that implementation. Algorithm is given
below MailAssistSystem(WebPage):

for TextArea in the webpage: do commited value =
null initial text = textcontent

while text present commit(initial text)
do execute commit(value) execute commit(value) on

keypress. buffer = null
if textarea loses focus

do buffer = textcontent commit(buffer)
if form is submitted

do commited value = null commit(commited value)
commit(value)
if value is significant
call XMLHTTP POST REQUEST(value)

This is a primary algorithm on the webpage (i.e mail ap-

plication). The algorithm starts by accessing the textarea
of the webpage and its contents, the text content present in
it is committed using the commit function, initial content is
committed and the textarea element in the webpage has
an ’onkeypress’ event handler associated with it, values are
committed on keypress, also we save the data in the form of

buffer when the page loses its focus just to be on the safe
side. The commit function checks whether the text value is
significant or not i.e it’s a string and not just a whitespace.
This particular algorithm focuses only on sending the text
content in the textarea to the server where they will be
parsed by another algorithm using PHP which not only
stores the words into the database and updates their records,
but also sends back replies to user as he needs it. The
snapshots are shown below.

Screenshot 1 is taken for a textarea on a site
pastebin.com, this code works on any textarea and is
restricted to mail appilcation as of now. So once the text is
typed in the textarea, it is continuously saved while typing,
along with the frequency count of it i.e the number of times
its being used in the textarea. The JavaScript is responsible
for taking the words splitting them and also putting the
sentence into the database and once it reaches the database
we use PHP to retrieve it using simple queries when
needed. Screenshot 2 shows these words and frequency
attributes stored in database. Screenshot 3 shows the
system implemented. When the user types ’hel’ he gets
suggestions when he uses right click(i.e context menu) and
choosing any option automatically fills the field. Two types
of suggestions are given as seen in the above menu, one
would be context related and other is words/sentences.
Context related filling is by taking the current page into
consideration. The above mail had the ’To’ field
as ’vidyuthd@gmail.com’, so the suggestions in the first
group would be considering the To field into account. For
example, if the user starts with’Dea’ then the suggestions
would be in the form of ’Dear

Vidyuth’, ’Dear Vidyut’, etc. Screenshot 4 shows the
options available so far for the word ’you’ and so shows the
word your and by selecting it the user can fill it. And also
note that till now no sentence has been completed with the
word.

Fig. 3. Screenshot 1.

International Journal of Innovation, Management and Technology, Vol. 3, No. 1, February 2012

48

Fig. 4. Screenshot 2.

Fig. 5. Screenshot 3.

This is supported in Screenshot 5 shown below Screenshot 4.

The other two individual Grease Monkey Scripts, Text area
Backup [7] which can be used to save the text typed in any
text area on a webpage and Context Menu [8] which can
highlight a word—phrase and right click to get a context
menu full of search links for that phrase were taken as the
starting points for this particular application.

IV. DESIGN AND IMPLEMENTATION
The system implemented so far is a proof of concept with

JavaScript is responsible for sending the data to the server.
The server being used is MAMP (Mac, Apache, MySql and
PHP) [9].

Fig. 6. Screenshot 4.

Fig. 7. Screenshot 5.

This server enables us to run the PHP running script on

MySql server, which processes the data and is the core
component of the system. The main components of the
system are the Browser and the Server. The architecture of
the system is similar to MVC (Model View Controller)
architecture pattern. Here the php script plus database acts
as the model, the browser window as the view and the
JavaScript as the intermediate controller. The components
are briefly described below.

International Journal of Innovation, Management and Technology, Vol. 3, No. 1, February 2012

49

1) MAMP Server:
The server acts as a repository which stores all data
regarding user. The php script on the server parses
the data and stores it in the database. MAMP (Mac,
Apache, MySql and PHP) server which sits on the
client is responsible for data storage, move- ment and
its management. This server is chosen because it’s free
and source can be modified to make it a compact server
which can sit on user’s machines. Most impor- tantly,
the server is reliable, compatible with any system
through other forms such as WAMP (for Windows)
and LAMP (for Linux). Most important thing to notice
here is that the server here acts as a medium for the
script to be run. The algorithm in the script is
essentially the crux or the core of the system.

2) Browser Web Page
This can be seen as the presenta- tion/view part of the
system on which the user accesses his mail application.
The Browser runs JavaScript with its JavaScript
engine.

3) Client-Side JavaScript
This component is responsible for collecting data from
the users and sending it to the local server for
processing the data, this is done by using JavaScript
Event Handlers [10]. It also receives data from the
server to show the user some recommendations. The
function of this component is to communicate with the
server bidirectionally i.e sends and receives data and
also show user his/her additional functionalities such as
options of deleting certain words/sentences from
database, set some of words/sentences as permanent in
database,etc. The implemented version is a proof of
concept version where JavaScript is used to send user
typed data to the server and server stores it. This was
implemented using Grease Monkey Addon of Firefox
for faster testing purposes ignoring the nuances when
writing an addon. Given below is the code

V. DESIGN CONSIDERATIONS
The section adds some more insight into the making of

the system, it elaborates on the decisions chosen for the
design

1) Criteria for Choosing Environment:
The MAMP server acts as a perfect choice, as its
variant LAMP(for Linux) and WAMP(for Windows)
are already available. Also languages such as ASP
was not used because it is properiatary, and since we
needed to processes the text in a script, PHP would
perfectly fit the bill, as HTML is generally for
rendering static pages, although with HTML 5 this
has changed. We persist with PHP because it is
open source, flexible nature. In future when we open
the code of this to masses they can change it because
of the PHP’s license which cannot be done in the
same way with ASP.
Efforts are being made to develop the next version
of this extension leveraging the power of HTML 5
included database API’s (Application Programming
Interface) to store the data in local/web storage
database which may help us in decreasing the

number of calls to the db’s which will be a major
concern when it is deployed in common for mass
users. Such design would indeed help us in
increasing the performance and thereby usability of
this extension.

2) Security Considerations:
Security and Privacy are the two major concerns
that still need to be addressed properly by
formatting some rules, as of now they are no rules
regarding this, but there are ideas, as this extension
goes in for production it would we be implementing
these ideas. Some of them are
a)Listing out some sensitive(generic) words and fil-
tering them, so that they are not included in the
database. For ex: ’Ferrari’ is one of the words which
are commonly used for passwords, so we check for
such occurrences prefixed or suffixed with and omit
them while collecting data. This is one of the ideas,
this is tedious but it ensures to cut some volume of
words.
b) Giving the user the option to turn off to include
a particular word into the data collection, this can be
implemented easily and hence makes the user
responsible in choosing the words he does not want
to be stored.
c) Assigning a stale date for each particular word
and asking the user to choose the time, after which
that particular word doesn’t appear in the database
if he doesn’t use it again. When a word is given this
option, it will auto deleted as a part of maintanence
check scripts.

The most important thing to remember is that this
system is on the client side and hence no issues of sensitive
user data being sent across to other domains or to some
central server. This are some of the ideas, once after
formulating a solid number of rules with people agreeing
upon, surely this extension can go into production
environment. The aim of this extension is to give the user
as much freedom as he wants and hence the rules are
designed taking care of that point.

VI. CONCLUSION AND FUTURE RESEARCH
This paper mainly focuses on the implementation part

of the user assist system for mail composition and its
design, this system has a lot of scope for improving as said
in the paper. The implemented part so far is a small proof
of concept, we plan to include various user related
attributes and implement a good algorithm for the php
script to manage the data effectively. The other aspects for
future consideration are user chosen filter system, ranking
system, decaying of usage of words with time. All this
aspects have to be taken care of for writing the script (PHP)
for producing an advance system which is capable of
adapting to user.

REFERENCES
[1] M. Pilgrim, Grease Monkey Hacks, 1st ed, O’Reilly, Nov 2005, ch 7
[2] M. Pilgrim, Dive into Grease Monkey. [Online]. pp.2-3. Available:

http://igor.chudov.com/manuals/diveintogreasemonkey-2005-05-09/
diveintogreasemonkey.pdf

International Journal of Innovation, Management and Technology, Vol. 3, No. 1, February 2012

50

[3] M. Pilgrim, Dive into Grease Monkey, [Online]. pp.9-16. Available:
http://igor.chudov.com/manuals/diveintogreasemonkey-2005-05-09/
diveintogreasemonkey.pdf

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern Oriented Software Architecture, John Wiley and Sons, 1996,
pp.125-144

[5] M. Pilgrim, Dive into Grease Monkey. [Online]. pp.75-80. Available:
http://igor.chudov.com/manuals/diveintogreasemonkey-2005-05-09/
diveintogreasemonkey.pdf

[6] M. Pilgrim, Dive into Grease Monkey. [Online]. pp.77-78. Available:
http://igor.chudov.com/manuals/diveintogreasemonkey-2005-05-09/
diveintogreasemonkey.pdf

[7] Textarea Backup Grease, “Monkey user script for saving text in text
area,” [Online]. Available: http://userscripts.org/scripts/show/7671

[8] Context Menu Grease Monkey user script, Highlight a
word—phrase and right click to get a context menu full of search
links for that phrase. [Online]. Available:
http://userscripts.org/scripts/show/4912

[9] Setting up Mac Apache Mysql PHP (MAMP) on Mac. [Online].
Available: http://documentation.mamp.info/en/mamp

[10] J. E Resig, Pro JavaScript Techniques, Apress Pro, 2006, pp.
325-340

International Journal of Innovation, Management and Technology, Vol. 3, No. 1, February 2012

51

	组合 1
	195-M650

