
International Journal of Innovation, Management and Technology, Vol. 2, No. 1, February, 2011

ISSN: 2010-0248

49



Abstract—Fast and high quality clustering is one of the most

important tasks in the modern era of information processing

wherein people rely heavily on search engines such as Google,

Yahoo, and Bing etc. With the huge amount of available data

and with an aim to creating better quality clusters, scores of

algorithms having quality-complexity trade-offs have been

proposed. However, the k-means algorithm proposed during

late 1970’s still enjoys a respectable position in the list of

clustering algorithms. It is considered to be one of the most

fundamental algorithms of data mining. It is basically an

iterative algorithm. In each iteration, it requires finding the

distance between each data object and centroid of each cluster.

Considering the hugeness of modern databases, this task in

itself snowballs into a tedious task. In this paper, we are

proposing an improved version of k-means algorithm which

offers to provide a remedy of the aforesaid problem. This

algorithm employs two data structures viz. red-black tree and

min-heap. These data structures are readily available in the

modern programming languages. While red black tree is

available in the form of map in C++ and TreeMap in Java,

min-heap is available in the form of priority queue in the C++

standard template library. Thus implementation of our

algorithm is as simple as that of the traditional algorithm. We

have carried out extensive experiments. The results so obtained

establish the superiority of our version of k-means algorithm

over the traditional one.

Index Terms—clustering; k-means algorithm; min-heap;

red-black tree.

I. INTRODUCTION

Clustering is one of the most fundamental tasks of data

mining. It is the task of segregation of objects into groups of

similar or nearly similar objects. The objects within each

group should exhibit a relatively higher degree of similarity

while the similarity among objects belonging to different

clusters should be as small as possible [1].

Given a set of objects, we define clustering as a technique

to group similar objects together without the prior knowledge

of group definition. Thus, we are interested in finding k

smaller subsets of objects such that objects in the same set are

Rajeev Kumar is with the Department of Information Technology, ABV-

Indian Institute of Information Technology and Management, Gwalior

(M.P.), INDIA. E-mail: rajeevkumariiitm@gmail.com

Rajeshwar Puran is with the Department of Information Technology,

ABV- Indian Institute of Information Technology and Management, Gwalior

(M.P.), INDIA. E-mail: puran.iiitm@gmail.com.

Joydip Dhar is with the Department of Applied Sciences, ABV- Indian

Institute of Information Technology and Management Gwalior (M.P.),

INDIA.

E-mail: jdhar@iiitm.ac.in.

more similar to each other while objects in different sets are

more dissimilar.

Data Representation by fewer clusters does lose some of

the minute details. It, however, simplifies the whole process.

From the point of view of machine learning, clusters

correspond to hidden patterns. Clustering is considered to be

unsupervised learning. Clustering enjoys a vital position in

data mining applications. The data mining tasks where

clustering plays a crucial role include data exploration,

information retrieval, text mining, applications pertaining to

spatial database, web mining, marketing, medical

diagnostics, CRM, computational biology etc.

k-means algorithm [2] is one of the most heavily used

algorithms for clustering. It is a classic and basic algorithm

for clustering. It is a partitioning algorithm [3]. It basically

opts for an iterative process. For most practical purposes, it

proves to be fast enough to generate good clustering solution.

However, due to heavy numerical computation required, the

efficiency of k-means algorithm becomes a point of concern

in case of large datasets. It starts to perform poorly for large

datasets.

In past, researchers have made several attempts in order to

improve the efficiency of k-means algorithm. In paper [8],

the authors have proposed an ingenious way to improve the

execution time of k-means algorithm. This algorithm, in

particular is useful in solving the clustering problems in gene

expression datasets. The authors, in paper [9], gave yet

another improved version of k-means algorithm named

k-means++ algorithm. They achieved the improvement in

performance by augmenting k-means with a very simple,

randomized seeding technique. This algorithm is found to be

Θ(log k)-competitive with the optimal clustering. In paper

[10], the authors have tried to improve the performance by

indigenously defining the initial k centroids. They noted that

different initial centroids lead to different results differing

heavily in the quality of clustering solutions obtained. In

paper [11], the authors have attempted to solve the problem

of local optimum in document clustering. They proposed a

novel Harmony k-means Algorithm (HKA). This new

algorithm deals with document clustering based on Harmony

Search (HS) optimization method .It is proved by means of

finite Markov chain theory that the HKA converges to the

global optimum. In paper [12], the authors have proposed an

incremental approach to clustering that dynamically adds one

cluster center at a time through a deterministic global search

procedure consisting of N (with N being the size of the data

set) executions of the k-means algorithm from suitable initial

positions. They also proposed modifications of the method to

reduce the computational load without significantly affecting

Enhanced K-Means Clustering Algorithm Using

Red Black Tree and Min-Heap

Rajeev Kumar, Rajeshwar Puran and Joydip Dhar

International Journal of Innovation, Management and Technology, Vol. 2, No. 1, February, 2011

ISSN: 2010-0248

50

solution quality. In paper [13], the authors presented yet

another approach to improve the speed of the k-means

algorithm. Their algorithm basically organizes all the

patterns in a k-d tree structure such that one can find all the

patterns which are closest to a given prototype efficiently. All

the prototypes are considered to be potential candidates for

the closest prototype at the root level. However, for the

children of the root node, the candidate set may be pruned by

using simple geometrical constraints. This approach can be

applied recursively until the size of the candidate set is one

for each node. In paper [14], the authors have presented an

efficient implementation of K-means algorithm which is

based on storing the data in a kd-tree [15]. For each node of

the tree, they maintained a candidate tree. The candidates for

each node are pruned, as they are propagated to the node's

children

In this paper, we intend to present an improved version of

k-means algorithm. Although this algorithm does not differ

with the traditional k-means algorithm [2] in terms of the

quality of the clustering solution produced, it does

outperform the traditional k-means algorithm in terms of

running time. Thus, it enhances the speed of clustering and

improves the time complexity of the traditional k-means

algorithm.

The rest of this paper is organized as follows. The section 2

and section 3 give overviews of red-black tree and min-heap

respectively. Section 4 discusses k-means clustering

algorithm. Section 5 describes the problem we are working

on. In section 6, we have presented our algorithm. Section 7

speaks about the implementation details. Section 8 analyses

the results obtained. Section 9 concludes and discusses the

possible future work.

II. RED-BLACK TREE

Red-black tree is a self-balancing binary search tree with

one extra bit of storage per node [4]. This data structure was

introduced by Rudolf Bayer in 1972. Although a complex

data structure, it has a one of the best worst case running time

for dynamic set operations. It takes O(logn) time for search,

insertion and deletion , where n is the total number of

elements in the tree. Each node of this tree has a color either

red or black associated with it. A red-black tree, like all other

binary search trees, allows in-order traversal,

Left-Root-Right, of their elements.

In addition to the ordinary requirements imposed on the

binary search trees [17], a red-black tree has the following

additional requirements associated with it [4].

1) Every node is either red or black.

2) The root is black.

3) Every leaf (NIL) is black.

4) If a node is red, then both its children are black.

5) For each node, all paths form the node to descendent

leaves contains the same number of black nodes.

These constraints instigate an important characteristic of

red-black trees that the longest path from the root to any leaf

is at most two times as long as the shortest path from the root

to any other leaf in that tree, thus rendering the tree roughly

balanced. If there are n nodes in the tree, the height of the tree

is at most 2log(n+1). Since operations such as insertion,

deletion and searching etc. require a time proportional to the

height of the tree, this upper bound on the height allows the

red-black trees to be extremely efficient in terms of

worst-case complexity, unlike ordinary binary search trees

[17] where the worst case complexity is O(n).

The following picture depicts a typical red-black tree.

Figure 1. Red-Black Tree

Red-black tree is readily available in the form of map in

the C++ standard template library [6] and TreeMap in Java

[7]. Thus they are quite easy to implement.

III. MIN- HEAPS

The min-heap data structure [5] is an array object which

can be visualized as an almost complete binary tree. The

following figure depicts a typical min-heap.

Figure 2. Min-Heap Tree

Each node of the tree stores a value corresponding to an

element of the array. The tree is filled on all levels except

possibly the lowest level where it is filled from the left up to a

point where the values exhaust. An array A corresponding to

a min-heap is an object with two attributes: length [A] which

is the number of elements in the array and heap-size [A], the

number of elements in the heap sorted within array A. That is,

although A[1…., length [A]] may contain valid numbers, no

element after A[heap-size[A]] , where heap- size[A] ≤

length [A] , is an element of the min-heap.

The property which makes min-heap a valuable data

structure is that if B is a child node of A then key [A] ≤ key

[B]. Thus, the smallest element of the array is always found to

be in the root node.

The operations generally performed with a min-heap are

International Journal of Innovation, Management and Technology, Vol. 2, No. 1, February, 2011

ISSN: 2010-0248

51

1) find-min – popping out the minimum element of the

min-heap in Θ(1) time.

2) delete-min: removing the root node in Θ(log n) time.

3) decrease-key: updating a key in Θ(log n) time.

4) insert: adding a new key in Θ(log n) time.

5) merge : joining two heaps to form a valid new heap

containing all the elements of both in Θ(n) time.

Min-heaps are readily available in the form of

priority_queue in the C++ standard template library [6].

However, sadly they are neither available in Java nor in C#.

Thus, people trying to implement the algorithm proposed in

this paper in Java or C# will have to implement their own

version of min-heap.

IV. THE K-MEANS CLUSTERING ALGORITHM

The K-means algorithm [2] is a classical example of a

clustering algorithm. It is one of the most widely used

clustering algorithms in data mining. It is a simple,

non-supervised learning algorithm. It is basically a

partitioning algorithm. The basic aim is to divide the given n

objects into k groups through an iterative process using

certain similarity measures.

This algorithm basically works in two phases. In the first

phase, k objects out of the given n objects are chosen. These

objects are declared to the centroids of the initial clusters.

Now, each data object is bound to its nearest cluster. The

distance between a data object and a cluster is usually

determined using the Euclidean distance.

When each data object is assigned to some cluster, the first

phase is over. Now the second phase starts. This phase

consists of multiple iterations. In each iteration, new

centroids of the clusters are calculated. The distance between

each object and each cluster is recalculated as the clusters

have changed. Now the objects are assigned to the cluster

which is nearest to it. Iterations continue until a stage reaches

when no more movement of data objects between the clusters

take place. This is considered to be the end of the K-means

algorithm.

Figure 3. Working of k-means clustering algorithm

Figure 4. Working of k-means clustering algorithm

Figure 5. Working of k-means clustering algorithm

V. PROBLEM DESCRIPTION

The k-means algorithm relies on calculation of distance

between each data object and each cluster during each

iteration. This task in itself can cause the algorithm run out of

time in case of large datasets. Suppose, we need to partition

100000 objects into 100 clusters. Suppose the algorithm runs

for 100 iterations. Thus the algorithm will have the calculate

distance for a massive 100000 × 100 × 100 i.e. 1000000000

times.

If one carefully analyses the working of the k-means

algorithm, one can deduce that there is no need to repeatedly

calculate the distances between each data object and each

cluster. Suppose in an iteration, only one data object moved

from one cluster to another cluster, all other k-2 clusters

being unaltered. One can easily understand that there is no

need of calculation of distances between these k-2 clusters

and data objects in the next iteration. However, the k- means

algorithm still makes these unnecessary calculations. This is

a huge destruction of time. In this paper, we propose an

improved version of k-means algorithm in which we have

astutely eliminated the need to recalculate the distances

between data objects and clusters. For this purpose, we have

used red-black tree [4] and min-heap [5] in our algorithm.

VI. PROPOSED METHODOLOGY

Our algorithm basically aims at reducing the

computational overhead arising out of unnecessary

calculation of distances between data objects and clusters in

each iteration. We, first of all, choose k data objects to serve

as centroids of k initial clusters. Now we calculate the

Euclidean distance of each data object from these centroids.

International Journal of Innovation, Management and Technology, Vol. 2, No. 1, February, 2011

ISSN: 2010-0248

52

We assign each data object to its nearest cluster based on the

Euclidean distance just calculated. We initialize an empty red

black tree. Now we insert, into this tree, labels of the objects

as keys and a min-heap corresponding to each key as

corresponding values. The min-heap in turn contains pairs of

labels of clusters and distances of their centroids from the

data object (key) as its values. Now if in an iteration, an

object moves from one cluster to another cluster, we

recalculate the centroids of these two clusters. Now we

calculate the new distances between these two clusters and

data objects. We, now, replace the old distances saved in the

min-heaps with these new distances. We continue this

process. It is noteworthy that we calculate the new distances

corresponding to only those clusters which have altered due

to movement of data objects. In the next iteration, we pop out

the minimum element of each min-heap corresponding to

each object put in the red-black tree as key. This popped out

element is a pair of a cluster label and distance of its centroid

from the object. Now the cluster corresponding to this class

label will act as the new cluster for the object. Thus no

recalculation of distances between the objects and clusters is

required. Suppose a run of k-means algorithm consists of

only one iteration. Suppose, this iteration in turn consists of

only one movement of a single object. Our algorithm in this

case, will calculate new distances corresponding to only

those two clusters which have altered due to movement of

data objects. However the traditional version of the K-means

algorithm will calculate the distances of each object with

each cluster. Thus, our version of K-means algorithm

provides huge advantage in terms of time over the traditional

K-means algorithm. Our algorithm ends in the same way as

the traditional K-means algorithm i.e. when no object moved

from one cluster to other cluster in an iteration.

A simple question can be raised why we used a red-black

tree. We could have used a simple array. What advantage

does a red-black tree provide over the array? The answer lies

in the structure of the red-black tree. A red-black tree, as

discussed earlier, consists of pairs of key and value. The key

can either be a numerical value or a string value or both. It

also does not need to be in any particular order. One key can

be “India” while other key can be “train”. In other words a

key can be anything. However in an array, only numerical

values can act as keys. Also they have to be in order i.e

0,1,2,3,4,5,6…… Now an object label can be anything. Thus

an array would prove to be highly ineffective in this case,

while a red-black tree will serve the purpose with full

strength.

A. Pseudocode of the Proposed Algorithm

 Input:

k : the number of clusters required.

n : number of given data objects

D : a data set containing objects.

Output: A set of k clusters

Step1: Choose K random objects from given n data objects.

Step2: Assign each data object to its nearest cluster based on

the Euclidean distance.

Step3: Initialize an empty red black tree.

Step4: Fill the tree with object labels as key and min-heaps as

value.

Step5: Fill the min-heaps with the pairs of cluster labels and

distance between the cluster and the key.

Step6: Repeat step7 to step 13 until no object moved between

clusters.

Step7: Repeat steps8 to steps10 for each object.

Step8: Pop the topmost element i.e. the minimum element of

its corresponding min heap. If the cluster label

contained in this element is the same as the present

cluster label of the object, do nothing. Otherwise move

the object into the cluster corresponding to the cluster

label obtained.

Step9: Calculate new centroids of the two clusters which have

suffered alteration i.e. the original and the new cluster

of the object just moved.

Step10: Calculate the distances of each object from these

two clusters centroids and replace the old ones with

these just calculated distances.

Step11: Do step 12 and step 13 for each object.

Step12: Pop out the minimum element of each min-heap

corresponding to the object put in the red-black tree as

key. This popped out element is a pair of a cluster label

and distance of its centroid from the object.

Step13: Check the cluster corresponding to this class label.

If this cluster is the same as the original cluster of the

object, do nothing. Otherwise, Move the object to the

new cluster.

VII. EXPERIMENTAL DETAILS

In order to testify our algorithm, we have carried out

sophisticated experiments wherein we have compared the

working of our algorithm the traditional k-means

algorithm .We have coded our version of k-means and the

traditional one in Java programming language. We have

chosen this language owing to its unique feature of

portability. The codes prepared by us, hence, can be run on

any operating system, be it windows XP, Vista, Fedora,

Ubuntu or Macintosh. We have used a machine possessing 1

GB main memory and a 1.83 GHz dual core processor with

windows XP service pack 2 as the operating system.

A. Input Dataset

In our experiments, we have used real datasets downloaded

from [16]. These datasets are described in the following table.
TABLE 1. DATASET

Dataset Number of

attributes

Number of

instances

Abalone 8
4177

Annealing 38 798

Dermatology 33 366

Mechanical Analysis 8 209

VIII. RESULTS AND ANALYSIS

We plot the graphs between the traditional k-means

International Journal of Innovation, Management and Technology, Vol. 2, No. 1, February, 2011

ISSN: 2010-0248

53

clustering algorithm and our improved k-means clustering

algorithm for each dataset. They are depicted in figure 6-9.

Figure 6. Performance comparison of Traditional k-means algorithm and

improved k- means algorithm for Abalone dataset

Figure 7. Performance comparison of Traditional k-means algorithm and

improved k- means algorithm for Annealing dataset

Figure 8. Performance comparison of Traditional k-means algorithm and

Improved k- means algorithm for Dermatology dataset

Figure 9. Performance comparison of Traditional k-means algorithm and

improved k- means algorithm for Mechanical Analysis dataset

One can easily conclude from the above graphs that our

algorithm improves the time complexity of the k-means

algorithm.

IX. CONCLUSIONS AND FUTURE WORK

The repeated calculation of distances between each data

object and each cluster renders the k-means algorithm as

computationally demanding. In this paper, we have proposed

an improved version of k-means which offers a remedy to the

aforesaid problem. This algorithm employs red-black tree

and min-heaps in its implementation. These data structures

are readily available in programming languages. Thus the

implementation of this algorithm is as easy as the normal

k-means algorithm. We have performed sophisticated

experiments wherein we have compared the performances of

our version of k-means with the traditional version. We have

used both synthetic dataset and real dataset. Our algorithm is

found to be outperforming the traditional k-means in terms of

running time.

Our algorithm saves the distances between data objects

and clusters. It then dynamically changes them when

required. However, the saving of the distances requires much

space. Thus, although our algorithm is superior to the

traditional k-means algorithm in terms of time complexity, it

appears to be lagging behind in terms of space complexity. In

future, research work may be oriented to sort out this

drawback of our algorithm.

REFERENCES

[1] Han, J., Kamber,M.: Data Mining Concepts and Techniques. Morgan

Kaufmann Publishers, San Francisco (2006).

[2] J. Hartigan and M. Wong, “Algorithm AS136: A k-means clustering

algorithm,” Applied Statistics, 1979, pp. 100-108.

[3] A. K Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: A

Review,” ACM Computing Survey, Vol. 31, No. 3, 1999, pp.

264-323.

[4] Bayer, R., McCreight, E. M.: Organization and maintenance of large

ordered indexes. Acta Informatica, 1(3): pp. 173-189 (1972).

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms. MIT Press, Cambridge, MA, 2nd edition (2001).

[6] Schildt, H.: C++: The Complete Reference. 4th edition, McGraw-Hill,

Berkeley (2003).

[7] Schildt, H.: Java: The Complete Reference. 7th edition, McGraw-Hill,

Berkeley (2007).

[8] A .M.Bagirov, K.Mardaneh, Modified global k-means algorithm for

clustering in gene expression datasets, in: WISB’06, Australian

Computer Society, Inc., Darlinghurst, Australia, 2006, pp.23–28.

International Journal of Innovation, Management and Technology, Vol. 2, No. 1, February, 2011

ISSN: 2010-0248

54

[9] D. Arthur and S. Vassilvitskii, “K-means++: the advantages of careful

seeding,” In: ACM-SIAM symposium on discrete algorithms, 2007.

[10] Yuan F, Meng Z. H, Zhang H. X and Dong C. R, “A New Algorithm to

Get the Initial Centroids,” Proc. of the 3rd International Conference on

Machine Learning and Cybernetics, pp. 26–29, August 2004.

[11] M. Mahdavi and H. Abolhassani, “Harmony k -means algorithm for

document clustering,” Data Mining and Knowledge Discovery 2009.

[12] A. Likas, N. Vlassis, and J. J. Verbeek. The global k-means clustering

algorithm. Pattern Recognition, 36(2),2003.

[13] K. Alsabti, S. Ranka, V. Singh, An efficient K-means clustering

algorithm, In 11th international parallel processing Symposium.

[14] T. Kanungo, D.M. Mount, N.S. Netanyahu, C. Piatko, R. Silverman,

A.Y. Wu, An efficient k-means clustering algorithm: Analysis and

implementation, IEEE Transaction on Pattern Analysis and Machine

Intelligence, 24 (2002).

[15] J.L. Bentley, ªMultidimensional Binary Search Trees Used for

Associative Searching,º Comm. ACM, vol. 18, pp. 509-517, 1975.

[16] UCI Repository of Machine Learning Databases,

http://archive.ics.uci.edu/ml/datasets.html.

[17] Knuth, D. E.: Sorting and searching, volume 3 of The Art of Computer

Programming, Addison-Wesley, Reading, MA (1973).

